MA2316: solutions to (part B of) study week challenge

1. Note that

$$\frac{233 + 387i}{103 + 363i} = \frac{320}{277} - \frac{87}{277}i \approx 1$$

so the first round of the Euclidean algorithm tells us that

gcd(103+363i, 233+387i) = gcd(103+363i, 233+387i-103-363i) = gcd(103+363i, 130+24i).

Furthermore,

$$\frac{103 + 363i}{130 + 24i} = \frac{43}{34} + \frac{87}{34} \approx 1 + 3i,$$

so the second round of the Euclidean algorithm tells us that

 $\gcd(103+363i, 130+24i) = \gcd(130+24i, 103+363i - (130+24i)(1+3i)) = \gcd(130+24i, 45-51i).$

One further step gives us

$$\frac{130+24i}{45-51i} = 1 + \frac{5}{3}i \approx 1 + 2i$$

 \mathbf{SO}

 $\gcd(130+24i,45-51i) = \gcd(45-51i,130+24i-(45-51i)(1+2i)) = \gcd(45-51i,-17-15i).$

Since 45 - 51i = (-17 - 15i)(-3i), we conclude that

$$gcd(103 + 363i, 233 + 387i) = -17 - 15i$$

(or one of the Gaussian integers differing from that by an invertible factor).

2. Recall that a number is congruent to the sum of its decimal digits modulo 9, so

 $n^{23} \equiv 3 + 7 + 9 + 2 + 6 + 4 + 3 + 4 + 8 + 8 + 0 + 0 + 6 + 8 + 2 + 9 + 8 + 9 + 3 + 2 + 2 + 1 + 3 + 9 + 9 + 9 + 4 + 4 + 0 + 9 + 9 + 2 + 2 + 1 + 4 + 6 + 0 + 4 + 5 + 4 + 4 + 3 + 1 + 1 \equiv 8 \equiv -1 \pmod{9}.$

Also, we trivially have $n^{23} \equiv 1 \pmod{10}$, since the last decimal digit of n^{23} is 1.

Note that if n is not coprime to 9, then n^{23} is not coprime to 9, which we know is not the case, as $n^{23} \equiv -1 \pmod{9}$. Also, if n is not coprime to 10, then n^{23} is not coprime to 10, which we know is not the case, as $n^{23} \equiv 1 \pmod{10}$.

We have $\varphi(10) = \varphi(2)\varphi(5) = 4$, so for each x coprime to 10 we have $x^4 \equiv 1 \pmod{10}$ by Euler's theorem, and hence $x^{24} = (x^4)^6 \equiv 1 \pmod{10}$. Therefore, $n^{23} \equiv n^{-1} \pmod{10}$, and we conclude that $n^{-1} \equiv 1 \pmod{10}$, which in turn implies $n \equiv 1 \pmod{10}$.

Also, $\varphi(9) = 9 - 3 = 6$, so for each x coprime to 3 we have $x^6 \equiv 1 \pmod{9}$, and hence $x^{24} = (x^6)^4 \equiv 1 \pmod{9}$. Therefore, $-1 \equiv n^{23} \equiv n^{-1} \pmod{9}$, and $n \equiv -1 \pmod{9}$. We conclude that

$$\begin{cases} n \equiv 1 \pmod{10}, \\ n \equiv -1 \pmod{9}. \end{cases}$$

Solving this system of congruences, we get $n \equiv 71 \pmod{90}$. If n > 71, then $n \ge 161 > 100$, so n^{23} has at least 46 digits. We conclude that n = 71.

3. Note that $507 = 3 \cdot 13^2$, so in order to solve this congruence, we should solve it modulo 3, solve it modulo 13, lift the solution modulo 13 in $\mathbb{Z}/13^2\mathbb{Z}$, and merge the result with the modulo 3 answer using the Chinese Remainder Theorem.

First of all, by inspection we see that x = 1 is the only solution modulo 3. As for modulo 13, we note that $3^2 + 3 + 1 = 13$, so 3 is a solution, and since the sum of roots of a quadratic

equation is the negative of the coefficient at x, we conclude that $-1-3 \equiv 9 \pmod{13}$ is also a solution. Let us now lift these modulo 13^2 . Note that $(x^2+x+1)'=2x+1$, so it does not vanish for x = 3 or for x = 9, and hence Hensel's lemma guarantees that the lifts of roots modulo 13^2 exist and are unique. We have

$$(3+13k)^2 + (3+13k) + 1 \equiv 9 + 2 \cdot 3 \cdot 13k + 3 + 13k + 1 \equiv 13(1+7k) \pmod{13^2},$$

so k = 11 works, and 146 is a root modulo 13^2 . Also,

$$(9+13k)^2 + (9+13k) + 1 \equiv 81 + 2 \cdot 9 \cdot 13k + 9 + 13k + 1 \equiv 13(7+6k) \pmod{13^2},$$

so k = 1 works, and 22 is a root modulo 13^2 . Finally, we need to combine it with $x \equiv 1 \pmod{3}$. Since $13^2 \cdot 1 + 3 \cdot (-56) = 1$, we conclude that $1 \cdot 13^2 \cdot 1 + 22 \cdot 3 \cdot (-56) = -3527 \equiv 22 \pmod{507}$ and $1 \cdot 13^2 \cdot 1 + 146 \cdot 3 \cdot (-56) = -24359 \equiv 484 \pmod{507}$ are the only solutions.

Remark: one can note that we have $9 = 3^2$ for solutions modulo 13 and $484 = 22^2$ for solutions modulo 507, even further, we have $146 \equiv 22^2 \pmod{13^2}$. It is not completely coincidental, since $x^2 + x + 1 = 0$ means that $x^3 = 1$, and if **a** is a root of this equation, then a^2 is clearly also a root.

4. Note that modulo 2 this solution has a solution x = 1, so in what follows we assume p odd. First of all, $x^4 = (x^2)^2$, so if the congruence $x^4 \equiv -1 \pmod{p}$ has solutions, then $x^2 \equiv -1 \pmod{p}$ also has solutions. We know that $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$, so we conclude that $p \equiv 1 \pmod{4}$, p = 4m + 1. Now, for such x let a be such that $a^2 \equiv -1 \pmod{p}$, so the congruence $x^4 \equiv -1 \pmod{p}$ becomes $x^4 \equiv a^2 \pmod{p}$, that is $x^2 \equiv a \pmod{p}$ or $x^2 \equiv -a \equiv a^3 \pmod{p}$. Thus, our equation has solutions if $\left(\frac{a}{p}\right) = 1$. We recall that $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}$, so

$$\left(rac{\mathfrak{a}}{\mathfrak{p}}
ight)\equiv\mathfrak{a}^{2\mathfrak{m}}\equiv(\mathfrak{a}^2)^{\mathfrak{m}}\equiv(-1)^{\mathfrak{m}}\pmod{\mathfrak{p}},$$

and we conclude that for odd p the congruence $x^4\equiv -1 \pmod{p}$ has solutions if and only $p\equiv 1 \pmod{8}.$