MA2316: solutions to (part B of) study week challenge

1. Note that

$$
\frac{233+387 i}{103+363 i}=\frac{320}{277}-\frac{87}{277} i \approx 1
$$

so the first round of the Euclidean algorithm tells us that
$\operatorname{gcd}(103+363 i, 233+387 i)=\operatorname{gcd}(103+363 i, 233+387 i-103-363 i)=\operatorname{gcd}(103+363 i, 130+24 i)$.
Furthermore,

$$
\frac{103+363 i}{130+24 i}=\frac{43}{34}+\frac{87}{34} \approx 1+3 i
$$

so the second round of the Euclidean algorithm tells us that
$\operatorname{gcd}(103+363 i, 130+24 i)=\operatorname{gcd}(130+24 i, 103+363 i-(130+24 i)(1+3 i))=\operatorname{gcd}(130+24 i, 45-51 i)$.
One further step gives us

$$
\frac{130+24 i}{45-51 i}=1+\frac{5}{3} i \approx 1+2 i
$$

so
$\operatorname{gcd}(130+24 i, 45-51 i)=\operatorname{gcd}(45-51 i, 130+24 i-(45-51 i)(1+2 i))=\operatorname{gcd}(45-51 i,-17-15 i)$.
Since $45-51 i=(-17-15 i)(-3 i)$, we conclude that

$$
\operatorname{gcd}(103+363 i, 233+387 i)=-17-15 i
$$

(or one of the Gaussian integers differing from that by an invertible factor).
2. Recall that a number is congruent to the sum of its decimal digits modulo 9, so

$$
\begin{gathered}
\mathrm{n}^{23} \equiv 3+7+9+2+6+4+3+4+8+8+0+0+6+8+2+9+8+9+3+2+2+1+3+9+ \\
+9+4+4+0+9+9+2+2+1+4+6+0+4+5+4+4+3+1+1 \equiv 8 \equiv-1 \quad(\bmod 9)
\end{gathered}
$$

Also, we trivially have $n^{23} \equiv 1(\bmod 10)$, since the last decimal digit of n^{23} is 1 .
Note that if n is not coprime to 9 , then n^{23} is not coprime to 9 , which we know is not the case, as $n^{23} \equiv-1(\bmod 9)$. Also, if n is not coprime to 10 , then n^{23} is not coprime to 10 , which we know is not the case, as $n^{23} \equiv 1(\bmod 10)$.

We have $\varphi(10)=\varphi(2) \varphi(5)=4$, so for each x coprime to 10 we have $\chi^{4} \equiv 1(\bmod 10)$ by Euler's theorem, and hence $x^{24}=\left(x^{4}\right)^{6} \equiv 1(\bmod 10)$. Therefore, $n^{23} \equiv \mathfrak{n}^{-1}(\bmod 10)$, and we conclude that $n^{-1} \equiv 1(\bmod 10)$, which in turn implies $n \equiv 1(\bmod 10)$.

Also, $\varphi(9)=9-3=6$, so for each x coprime to 3 we have $x^{6} \equiv 1(\bmod 9)$, and hence $x^{24}=\left(x^{6}\right)^{4} \equiv 1(\bmod 9)$. Therefore, $-1 \equiv n^{23} \equiv n^{-1}(\bmod 9)$, and $n \equiv-1(\bmod 9)$. We conclude that

$$
\left\{\begin{array}{l}
n \equiv 1 \quad(\bmod 10) \\
n \equiv-1 \quad(\bmod 9)
\end{array}\right.
$$

Solving this system of congruences, we get $n \equiv 71(\bmod 90)$. If $n>71$, then $n \geqslant 161>100$, so n^{23} has at least 46 digits. We conclude that $n=71$.
3. Note that $507=3 \cdot 13^{2}$, so in order to solve this congruence, we should solve it modulo 3 , solve it modulo 13 , lift the solution modulo 13 in $\mathbb{Z} / 13^{2} \mathbb{Z}$, and merge the result with the modulo 3 answer using the Chinese Remainder Theorem.

First of all, by inspection we see that $x=1$ is the only solution modulo 3 . As for modulo 13 , we note that $3^{2}+3+1=13$, so 3 is a solution, and since the sum of roots of a quadratic
equation is the negative of the coefficient at x, we conclude that $-1-3 \equiv 9(\bmod 13)$ is also a solution. Let us now lift these modulo 13^{2}. Note that $\left(x^{2}+x+1\right)^{\prime}=2 x+1$, so it does not vanish for $x=3$ or for $x=9$, and hence Hensel's lemma guarantees that the lifts of roots modulo 13^{2} exist and are unique. We have

$$
(3+13 k)^{2}+(3+13 k)+1 \equiv 9+2 \cdot 3 \cdot 13 k+3+13 k+1 \equiv 13(1+7 k) \quad\left(\bmod 13^{2}\right),
$$

so $k=11$ works, and 146 is a root modulo 13^{2}. Also,

$$
(9+13 k)^{2}+(9+13 k)+1 \equiv 81+2 \cdot 9 \cdot 13 k+9+13 k+1 \equiv 13(7+6 k) \quad\left(\bmod 13^{2}\right),
$$

so $k=1$ works, and 22 is a root modulo 13^{2}. Finally, we need to combine it with $x \equiv 1(\bmod 3)$. Since $13^{2} \cdot 1+3 \cdot(-56)=1$, we conclude that $1 \cdot 13^{2} \cdot 1+22 \cdot 3 \cdot(-56)=-3527 \equiv 22(\bmod 507)$ and $1 \cdot 13^{2} \cdot 1+146 \cdot 3 \cdot(-56)=-24359 \equiv 484(\bmod 507)$ are the only solutions.

Remark: one can note that we have $9=3^{2}$ for solutions modulo 13 and $484=22^{2}$ for solutions modulo 507 , even further, we have $146 \equiv 22^{2}\left(\bmod 13^{2}\right)$. It is not completely coincidental, since $x^{2}+x+1=0$ means that $x^{3}=1$, and if a is a root of this equation, then a^{2} is clearly also a root.
4. Note that modulo 2 this solution has a solution $x=1$, so in what follows we assume p odd. First of all, $x^{4}=\left(x^{2}\right)^{2}$, so if the congruence $x^{4} \equiv-1(\bmod p)$ has solutions, then $x^{2} \equiv-1$ $(\bmod p)$ also has solutions. We know that $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$, so we conclude that $p \equiv 1(\bmod 4)$, $p=4 m+1$. Now, for such x let a be such that $a^{2} \equiv-1(\bmod p)$, so the congruence $x^{4} \equiv-1$ $(\bmod p)$ becomes $x^{4} \equiv a^{2}(\bmod p)$, that is $x^{2} \equiv a(\bmod p)$ or $x^{2} \equiv-a \equiv a^{3}(\bmod p)$. Thus, our equation has solutions if $\left(\frac{a}{p}\right)=1$. We recall that $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}}(\bmod \mathfrak{p})$, so

$$
\left(\frac{a}{p}\right) \equiv a^{2 m} \equiv\left(a^{2}\right)^{m} \equiv(-1)^{m} \quad(\bmod p)
$$

and we conclude that for odd p the congruence $\chi^{4} \equiv-1(\bmod p)$ has solutions if and only $p \equiv 1$ $(\bmod 8)$.

