MA2316: Introduction to Number Theory

Tutorial problems for January 23, 2014

"A roadmap towards Bertrand's postulate"

1. For two positive integers n and m, let $a_{0}+a_{1} m+a_{2} m^{2}+\cdots+a_{k} m^{k}$ (with $a_{i}<m$) be the base m expansion of n. Put $\sigma_{m}(n)=a_{0}+a_{1}+\cdots+a_{k}$. Show that $n-\sigma_{m}(n)$ is divisible by $m-1$.
2. In the previous question, assume that $m=p$ is a prime number. Show (by induction) that $\frac{n-\sigma_{p}(n)}{p-1}$ is equal to the highest power of p that divides n!.
3. The previous question implies that the highest power of p that divides $\binom{n_{1}+n_{2}}{n_{1}}=\frac{\left(n_{1}+n_{2}\right)!}{n_{1}!n_{2}!}$ is equal to

$$
\frac{\sigma_{p}\left(n_{1}\right)+\sigma_{p}\left(n_{2}\right)-\sigma_{p}\left(n_{1}+n_{2}\right)}{p-1} .
$$

Show that this number is equal to the number of times we have to carry numbers over when doing the vertical addition of base p expansions of n_{1} and n_{2}.
4. Using the previous question, show that:
(a) if $p>\sqrt{2 n}$ (that is, $2 n$ has at most two digits in base p), then the maximal power of p dividing $\binom{2 n}{n}$ is at most $\mathbf{1}$;
(b) if $2 n / 3<p \leqslant n$ (that is $p \leqslant n<3 p / 2$), then p does not divide $\binom{2 n}{n}$;
 therefore $N \leqslant 2 n$.
5. Suppose that there are no primes between n and $2 n$. Then, if we denote by $\mathfrak{m}_{\mathfrak{p}}$ the maximal power of \mathfrak{p} dividing $\binom{2 \mathfrak{n}}{n}$, the previous problems and one of the lemmas from class show that

$$
\binom{2 n}{n} \leqslant \prod_{\text {prime } p<\sqrt{2 n}} p^{m_{p}} . \prod_{\text {prime }} p \leqslant(2 n)^{\sqrt{2 n}<p \leqslant 2 n / 3} 1 \cdot 4^{2 n / 3}
$$

Show that $\binom{2 n}{n} \geqslant \frac{2^{2 n}}{2 n}$, and deduce that the above inequality cannot hold for large n (e.g. $n>1000$).

