MA2316: Introduction to Number Theory

Tutorial problems for January 30, 2014
"Norm-Euclidean rings of integers in quadratic fields"

1. Let $\alpha=a+b \sqrt{D} \in \mathbb{Q}(\sqrt{D})$. Recall that its conjugate $\bar{\alpha}$ is, by definition, $a-b \sqrt{D}$. Show that α is an algebraic integer (that is there exists a polynomial $f(x) \in \mathbb{Z}[x]$ with leading coefficient 1 such that $f(\alpha)=0$) if and only if $\alpha+\bar{\alpha}$ and $\alpha \bar{\alpha}=N(\alpha)$ are both integers. (You may use the fact that you are likely to know from the 2215 module: $\mathbb{Z}[x]$ is a UFD).
2. Deduce from the previous question that the ring $\mathcal{O}_{\sqrt{D}}$ consists of all complex numbers $\alpha=a+b \sqrt{D}$ with $a, b \in \mathbb{Z}$ if $D \equiv 2,3(\bmod 4)$, and consists of all complex numbers $\alpha=a+b \sqrt{D}$ with $a, b \in \mathbb{Z}$ or $a, b \in \frac{1}{2}+\mathbb{Z}$ if $D \equiv 1(\bmod 4)$. In the latter case, it can be described alternatively as all complex numbers $\alpha=a+b \frac{1+\sqrt{D}}{2}$ with $a, b \in \mathbb{Z}$.

We shall let

$$
\omega= \begin{cases}\frac{1+\sqrt{\mathrm{D}}}{2}, & \mathrm{D} \equiv 1 \quad(\bmod 4) \\ \sqrt{\mathrm{D}}, & \mathrm{D} \equiv 2,3 \quad(\bmod 4)\end{cases}
$$

so that the result proved above means that have

$$
\mathcal{O}_{\sqrt{D}}=\mathbb{Z} \oplus \mathbb{Z} \omega
$$

3. For each $\mathrm{D}<0$, describe all invertible elements in $\mathcal{O}_{\sqrt{\mathrm{D}}}$.
4. For each $\mathrm{D}=-1,-2,-3,-7,-11$, consider the geometric representation of $\mathcal{O}_{\sqrt{D}}$ as a lattice $\mathbb{Z} \oplus \mathbb{Z} \omega$ in the complex plane. For the parallelogram formed by the vectors representing 1 and ω, show that each its point is at the distance less than 1 from one of its vertices of the parallelogram.
5. Recall that for each $\beta \in \mathcal{O}_{\sqrt{D}}$, the ideal (β) is a lattice $\mathbb{Z} \beta \oplus \mathbb{Z} \beta \omega$ obtained from $\mathbb{Z} \oplus \mathbb{Z} \omega$ by rotation and re-scaling. Using that fact, deduce from the previous question that for each $D=-1,-2,-3,-7,-11$, the ring $\mathcal{O}_{\sqrt{\mathrm{D}}}$ is norm-Euclidean.
