MA2316: Introduction to Number Theory

Tutorial problems for February 6, 2014

"Modular arithmetic"

1. Show that the map $\tau: \mathbb{Z} /(a b) \mathbb{Z} \rightarrow \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ defined as $\tau(n+a b \mathbb{Z})=(n+a \mathbb{Z}, n+b \mathbb{Z})$ is a ring homomorphism. Use the First Isomorophism Theorem to show that for coprime a and b it is a ring isomorphism. (This statement about isomorphism is sometimes called the Chinese Remainder Theorem; the next problem will construct the inverse of τ which is was an important accomplishment of Chinese mathematics around the 5th century).
2. Suppose a and b are coprime. Use integer solutions to $a x+b y=1$ to solve the systems of simultaneous congruences

$$
\begin{cases}x \equiv 1 & (\bmod a) \\ x \equiv 0 & (\bmod b)\end{cases}
$$

and

$$
\left\{\begin{array}{lc}
x \equiv 0 & (\bmod a) \\
x \equiv 1 & (\bmod b)
\end{array}\right.
$$

Show that in general for all m and n the system of simultaneous congruences

$$
\begin{cases}x \equiv \mathfrak{m} & (\bmod a) \\ x \equiv \mathrm{n} & (\bmod \mathfrak{b})\end{cases}
$$

has solutions, and its solution is unique modulo ab.
3. Solve the system of congruences

$$
\begin{aligned}
& x \equiv 11 \quad(\bmod 23), \\
& x \equiv 12 \quad(\bmod 25), \\
& x \equiv 13 \quad(\bmod 27) .
\end{aligned}
$$

4. For which a does the following system of congruences have integer solutions? (Hint: $100=25 \cdot 4,35=5 \cdot 7$).

$$
\begin{array}{ll}
x \equiv a & (\bmod 100) \\
x \equiv b & (\bmod 35)
\end{array}
$$

5. Show that there are infinitely many prime numbers q such that $2 q+1$ is not a prime. (Hint: Fermat's Little Theorem might be helpful at some point.)
6. In class, it will be shortly proved that for an odd prime p the congruence $x^{2}+1 \equiv 0$ $(\bmod p)$ has solutions if and only if $p \equiv 1(\bmod 4)$. Using that, show that for every n all prime divisors of $4 n^{2}+1$ are of the form $4 k+1$, and adapt the Euclid's " $p_{1} p_{2} \cdots p_{n}-1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form $4 k+1$.
