Tutorial problems for February 13, 2014
"Around the quadratic reciprocity"
Let $n$ be an odd number, and let $n=p_{1} p_{2} \cdots p_{k}$ be its prime decomposition (possibly with repeated factors). Let us define the Jacobi symbol ( $\frac{a}{n}$ ) by the formula

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{k}}\right) .
$$

1. Give an example of $a$ and $n$ for which $\left(\frac{a}{n}\right)=1$ but $a$ is not congruent to a square modulo $n$.
2. Show that for Jacobi symbols we have $\left(\frac{a}{n}\right)\left(\frac{b}{n}\right)=\left(\frac{a b}{n}\right)$ and $\left(\frac{a}{n_{1}}\right)\left(\frac{a}{n_{2}}\right)=\left(\frac{a}{n_{1} n_{2}}\right)$ whenever $n, n_{1}, n_{2}$ are odd.
3. Show that if $m$ and $n$ are odd integers, then $\frac{m \mathfrak{n}-1}{2} \equiv \frac{m-1}{2}+\frac{n-1}{2}(\bmod 2)$. Explain why it implies that for each odd $n$ we have $\left(\frac{-1}{n}\right)=(-1)^{\frac{n-1}{2}}$.
4. Show that for any two coprime odd integers $m, n$ we have $\left(\frac{m}{n}\right)\left(\frac{n}{m}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}$.
5. Applying previous problem with $m=n+2$, show that for each odd $n$ we have $\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}$.
6. Show that all prime divisors of $9 n^{2}+3 n+1$ are of the form $3 k+1$.
7. Let $p$ be an odd prime number.
(a) Show that the function $k \mapsto \frac{1-k}{1+k}$ maps the set $(\mathbb{Z} / \mathrm{p} \mathbb{Z}) \backslash\{-1\}$ to itself and is a 1-to-1 correspondence.
(b) Compute the sum

$$
\sum_{k=0}^{p-1}\left(\frac{k}{p}\right) .
$$

8. Find the number of solutions to the equation $x^{2}+y^{2}=1$ in $\mathbb{Z} / \mathrm{p} \mathbb{Z}$. (Hint: this number is equal to $\sum_{y=0}^{p-1}\left(1+\left(\frac{1-y^{2}}{\mathfrak{p}}\right)\right)$.
