MA2316: Introduction to Number Theory
Tutorial problems for February 20, 2014
"Polynomial congruences and Hensel's Lemma"

1. Prove that for each odd prime \mathfrak{p}, for each a coprime to p, and for each \mathfrak{n}, the congruence $x^{2} \equiv a\left(\bmod p^{n}\right)$ has at most two solutions.
2. Find all solutions to the congruence $x^{2} \equiv 2\left(\bmod 7^{4}\right)$.
3. Find all solutions to the congruence $x^{2} \equiv-3\left(\bmod 13^{3}\right)$.
4. Show that for every prime $p \neq 2,17$ the polynomial $\left(x^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right)$ has roots in $\mathbb{Z} / p^{n} \mathbb{Z}$ for all n.
5. Show that for $p=2$ and for $p=17$ the polynomial $\left(x^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right)$ also has roots in $\mathbb{Z} / p^{n} \mathbb{Z}$ for all n.
6. Show that for every prime $p \neq 2,3$ the polynomial $\left(x^{3}-37\right)\left(x^{2}+3\right)$ has roots in $\mathbb{Z} / p^{n} \mathbb{Z}$ for all n. (Hint: if $\mathfrak{p} \not \equiv 1(\bmod 3)$, the mapping $x \mapsto x^{3}$ of the $\operatorname{group}(\mathbb{Z} / p \mathbb{Z})^{\times}$to itself is injective.)
7. Show that for $p=2$ and for $p=3$ the polynomial $\left(x^{3}-37\right)\left(x^{2}+3\right)$ also has roots in $\mathbb{Z} / p^{n} \mathbb{Z}$ for all n. (Hint: if $p \not \equiv 1(\bmod 3)$, the mapping $x \mapsto x^{3}$ of the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$to itself is injective.)
