MA2316: Introduction to Number Theory

Tutorial problems for March 13, 2014

"Diophantine equations and irreducible polynomials"

1. Show thatif (a, b, c) is an integer solution to the equation $x^{2}+y^{2}+z^{2}=2 x y z$, then all the three numbers a, b, c are even. Use it to deduce that this equation has the only solution $(0,0,0)$. (Warning: the triple $(a / 2, b / 2, c / 2)$ is not a solution to the same equation!)
2. Show that if (a, b, c) is an integer solution to the equation $x^{2}+y^{2}+z^{2}=x y z$, then all the three numbers a, b, c are divisible by 3 . Use it to deduce that there is a one-to-one correspondence between solutions to that equation and solutions to the Markov's equation $x^{2}+y^{2}+z^{2}=3 x y z$.
3. Using the identities $x^{4}+1=\chi^{4}-(-1)=\left(x^{2}+1\right)^{2}-2 x^{2}=\left(x^{2}-1\right)^{2}-\left(-2 x^{2}\right)$ (or otherwise) show that for each prime p the polynomial $x^{4}+1$ is reducible if viewed as a polynomial with coefficients in the field $\mathbb{Z} / p \mathbb{Z}$.
4. Show that the polynomial $\chi^{4}+1$ is irreducible in $\mathbb{Z}[x]$.
5. Show that if p is a prime number, and $\operatorname{gcd}(b, p)=1$, then $x^{n}+p x+b p^{2}$ is either irreducible in $\mathbb{Z}[x]$ or has an integer root.
6. Consider the polynomial $f(x)=9 x^{n}+6\left(x^{n-1}+x^{n-2}+\cdots+x^{2}+x\right)+4$. Show that this polynomial is irreducible in $\mathbb{Z}[x]$.
7. Using Mason-Stothers Theorem, show that there are no non-constant polynomials $f(t), g(t) \in \mathbb{C}[t]$ satisfying the equation $f^{3}-g^{2}=1$.
