The goal of this tutorial is to cover some further results on arithmetic functions.

1. Suppose that $\varphi(n)$ is a power of 2 (the importance of this is later shown in Galois theory: only for such \mathfrak{n} the regular \mathfrak{n}-gon can be constructed by ruler and compass). Show that it happens if and only if

$$
\mathrm{n}=2^{m} p_{1} \cdot \mathrm{p}_{2} \cdots p_{s}
$$

where m is a nonnegative integer, and p_{1}, \ldots, p_{s} are distinct Fermat primes, that is primes of the form of $2^{2^{k}}+1$.
2. Solve the equation (a) $\varphi(n)=6 ;(b) \varphi(\varphi(n))=6$.
3. Solve the equation (a) $\varphi(n)=n / 2 ;(b) \varphi(n)=2 n / 3$.
4. (generalisation of Möbius inversion) Suppose f, g are two functions with complex values defined on $\left[0,+\infty\right.$), and assume in addition that $\sum_{k, d \geqslant 1}|f(x /(k d))|<+\infty$ (for instance, that happens when $f(x)=0$ for $x<1)$. Show that if

$$
g(x)=\sum_{d \geqslant 1} f(x / d)
$$

then we have

$$
f(x)=\sum_{d \geqslant 1} \mu(d) g(x / d)
$$

5. Prove that

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{\mathrm{d}}-1\right)^{\mu(n / d)}
$$

Using this formula, compute $\Phi_{6}(x)$ and $\Phi_{10}(x)$. Also, use your favourite computer sofware (or do it by hand if you feel brave) to verify that $\Phi_{105}(x)$ has a coefficient not equal to $0,-1,1$. What is that coefficient, and at which power of x does it occur?
6. Suppose that $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$ is the prime decomposition of n. Find expressions for $\tau(n)$ and $\sigma(n)$ as products of k factors depending on p_{i}, a_{i}.

