MA2316: Introduction to Number Theory

Tutorial problems for April 3, 2014

Numbers: rational, irrational, algebraic and transcendental

1. Show that $\log _{2} 9$ is an irrational number, and explain why there exist two irrational numbers α and β such that α^{β} is rational.
2. Show that $\sqrt{2}+\sqrt{3}$ is an algebraic number, and find its minimal polynomial.
3. Show that $e=\sum_{n \geqslant 0} \frac{1}{n!}$ is not an algebraic number of degree 2. (Hint: if $a e^{2}+b e+c=0$, then $\mathrm{ae}+\mathrm{b}+\mathrm{ce}^{-1}=0$, where $e^{-1}=\sum_{n \geqslant 0} \frac{(-1)^{n}}{n!}$.)
4. Show that the number $\sum_{k \geqslant 0} \frac{2^{2^{k}}}{3 k^{k}}$ is transcendental.
5. Suppose that D is a positive integer which is not a perfect square. Show that for each $A>2 \sqrt{D}$ there exist only finitely many rational numbers $\frac{m}{n}$ satisfying the inequality

$$
\left|\frac{m}{n}-\sqrt{D}\right|<\frac{1}{A n^{2}} .
$$

(Hint: $\frac{m}{n}+\sqrt{D}=\frac{m}{n}-\sqrt{D}+2 \sqrt{D}$.)
6. Show that $\frac{1}{\pi} \sin ^{-1}\left(\frac{3}{5}\right)$ is irrational. (Hint: show that if we assume the contrary, then the number $\frac{3}{5}+\frac{4}{5} \mathfrak{i}=\frac{2+i}{2-i}$ is a complex root of 1 , and explain why $(2+i)^{n}=(2-i)^{n}$ cannot hold in $\mathbb{Z}[i]$ for $n>0$.)

