ASYMPTOTIC ANALYSIS OF ARITHMETIC FUNCTIONS (MA2316, ELEVENTH WEEK)

VLADIMIR DOTSENKO

Theorem 1. We have

$$
M_{\tau}(n)=\ln n+O(1) .
$$

Proof. Note that

$$
\begin{aligned}
& n M_{\tau}(n)=\sum_{k \leq n} \tau(k)=\sum_{k \leq n} \sum_{a b=n} 1=\sum_{a, b \leq n: a b \leq n} 1= \\
& =\sum_{a \leq \sqrt{n}} \sum_{b \leq n / a} 1+\sum_{a \leq \sqrt{n}} \sum_{b \leq n / a} 1-\sum_{a \leq \sqrt{n}, b \leq \sqrt{n}} 1=2 \sum_{a \leq \sqrt{n}}\left\lfloor\frac{n}{a}\right\rfloor-\lfloor\sqrt{n}\rfloor^{2}= \\
& \quad=2 \sum_{a \leq \sqrt{n}} \frac{n}{a}+O(\sqrt{n})+O(n)=2(n \ln \sqrt{n}+O(n))+O(n)=n \ln n+O(n) .
\end{aligned}
$$

Here, we use two estimates for the sum of inverse integers:

$$
\sum_{k=1}^{n} \frac{1}{k} \leq 1+\int_{1}^{n} \frac{d x}{x}=1+\ln n
$$

and

$$
\sum_{k=1}^{n} \frac{1}{k} \geq \int_{1}^{n+1} \frac{d x}{x}=\ln (n+1)
$$

which together imply that

$$
\sum_{k=1}^{n} \frac{1}{k}=\ln n+O(1) .
$$

Dividing $n M_{\tau}(n)=n \ln n+O(n)$ by n, we get the required statement.
Theorem 2. We have

$$
M_{\phi}(n)=\frac{3 n}{\pi^{2}}+O(\ln n) .
$$

Proof. Let us examine the function $\Phi(n)=n M_{\phi}(n)=\sum_{k \leq n} \phi(k)$. Extend it to all nonnegative real numbers, putting $\Phi(x)=\Phi(\lfloor x\rfloor)$ when x is not an integer. Let us first show that

$$
\sum_{d \geq 1} \Phi(x / d)=\frac{\lfloor x\rfloor\lfloor x+1\rfloor}{2} .
$$

Indeed, the right hand side is equal to the number of pairs (m, n) with $0 \leq m<n \leq x$. The number of such pairs with $\operatorname{gcd}(m, n)=d$ is equal to $\Phi(x / d)$, since factoring out d reduces counting these pairs to counting pairs $0 \leq m^{\prime} \leq n^{\prime} \leq x / d$, and for each $n^{\prime} \leq x / d$ the number of allowed m^{\prime} is $\phi\left(n^{\prime}\right)$.

To make use of the formula we just proved, we shall invoke the following generalisation of Möbius inversion which you will prove in the next tutorial:

Suppose f, g are two functions with complex values defined on $[0,+\infty)$, and assume in addition that $\sum_{k, d \geq 1}|f(x /(k d))|<+\infty$ (for instance, that happens when $f(x)=$ 0 for $x<1$). Show that if

$$
g(x)=\sum_{d \geq 1} f(x / d),
$$

then we have

$$
f(x)=\sum_{d \geq 1} \mu(d) g(x / d) .
$$

Thanks to this statement, we have

$$
n M_{\phi}(n)=\frac{1}{2} \sum_{k \geq 1} \mu(k)\lfloor n / k\rfloor\lfloor 1+n / k\rfloor .
$$

Let us play around with this formula a little bit. Clearly,

$$
\lfloor n / k\rfloor\lfloor 1+n / k\rfloor=(n / k+O(1))(n / k+O(1))=\left(n^{2} / k^{2}+O(n / k)\right),
$$

so

$$
\begin{aligned}
& n M_{\phi}(n)=\Phi(n)=\frac{1}{2} \sum_{k=1}^{n} \mu(k)\left(n^{2} / k^{2}+O(n / k)\right)= \\
& =\frac{n^{2}}{2} \sum_{k \geq 1} \frac{\mu(k)}{k^{2}}-\frac{n^{2}}{2} \sum_{k>n} \frac{\mu(k)}{k^{2}}+n \sum_{k=1}^{n}(O(1 / k))= \\
& \\
& =\frac{n^{2}}{2} \sum_{k \geq 1} \frac{\mu(k)}{k^{2}}+O(n)+O(n \ln n)=\frac{3 n^{2}}{\pi^{2}}+O(n \ln n) .
\end{aligned}
$$

Here we use obvious estimates

$$
\left|\sum_{k>n} \frac{\mu(k)}{k^{2}}\right| \leq \sum_{k>n} \frac{1}{k^{2}}<\sum_{k>n} \frac{1}{k(k-1)}=\frac{1}{n}
$$

and

$$
\sum_{k=1}^{n} \frac{1}{k}=O(\ln n)
$$

which we proved above already, as well as the formula

$$
\sum_{k \geq 1} \frac{\mu(k)}{k^{2}}=\prod_{p \text { prime }}\left(1-\frac{1}{p^{2}}\right)=\frac{1}{\prod_{p \text { prime }}\left(1-\frac{1}{p^{2}}\right)^{-1}}=\frac{1}{\sum_{m \geq 1} \frac{1}{m^{2}}}=\frac{1}{\frac{\pi^{2}}{6}}=\frac{6}{\pi^{2}} .
$$

Dividing by n, we get

$$
M_{\phi}(n)=\frac{3 n}{\pi^{2}}+O(\ln n)
$$

as required.
This theorem easily implies that the "probability" for two randomly chosen numbers to be coprime is $\frac{6}{\pi^{2}}$. (If we agree that the probability in question is the (limit as $N \rightarrow \infty$ of the) proportion of pairs (m, n) with coprime m, n among all pairs m, n with $0 \leq m, n \leq N)$.

