CYCLOTOMIC POLYNOMIALS AND THEIR APPLICATIONS (MA2316, NINTH WEEK)

VLADIMIR DOTSENKO

This week, we shall discuss an important family of polynomials and their applications in algebra and number theory.

Recall that a complex number ξ is said to be a primitive $n^{\text {th }}$ root of 1 , if $\xi^{n}=1$, and $\xi^{k} \neq 1$ for $1 \leq k<n$. The $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}(x)$ is the polynomial in $\mathbb{C}[x]$ with leading coefficient 1 whose roots (with multiplicity 1) are all primitive $n^{\text {th }}$ roots of 1 .
Example. We have $\Phi_{1}(x)=x-1, \Phi_{2}(x)=x+1, \Phi_{3}(x)=x^{2}+x+1=\frac{x^{3}-1}{x-1}, \Phi_{4}(x)=x^{2}+1$.
Primitive $n^{\text {th }}$ roots of 1 are complex numbers of the form $e^{\frac{2 \pi k}{n} i}$, where $0 \leq k \neq n-1$ and $\operatorname{gcd}(k, n)=1$. Clearly, the number of such k is equal to $\phi(n)$, the number of positive integers not exceeding n and coprime to n. We proved earlier in class that $\sum_{d \mid n} \phi(d)=n$. In the similar fashion, we shall now prove a generalisation of this statement, namely we shall show that

$$
\prod_{d \mid n} \Phi_{d}(x)=x^{n}-1 .
$$

(It is a generalisation, since comparing the degrees of polynomials on the left and on the right, we see that $\left.\sum_{d \mid n} \phi(d)=n\right)$. Indeed, each root of the polynomial on the right is a complex number of the form $e^{\frac{2 \pi k}{n} i}$, where $0 \leq k \neq n-1$. If we bring the fraction $\frac{k}{n}$ to lowest term, we shall get a primitive root of the degree equal to the denominator (which is a divisor of n, and all primitive roots for all divisors appear like that.

The formula we just proved implies the following result.
Lemma. Cyclotomic polynomials have integer coefficients: $\Phi_{n}(x) \in \mathbb{Z}[x]$ for all n.
Proof. Induction on n : if for all $m<n$ the polynomials $\Phi_{m}(x)$ have integer coefficients, then clearly

$$
\Phi_{n}(x)=\frac{x^{n}-1}{\prod_{d \mid n, d<n} \Phi_{d}(x)}
$$

has integer coefficients as well.
Let us now prove a result on cyclotomic polynomials that is important for Galois theory.
Theorem 1. For each $n \geq 1$, the cyclotomic polynomial $\Phi_{n}(x)$ is irreducible in $\mathbb{Z}[x]$.
Proof. Let us show that this theorem can be deduced from the following statement (and then prove that statement):

Let $g(x)$ be an irreducible divisor of $\Phi_{n}(x)$ in $\mathbb{Z}[x]$, and let ζ be a complex root of $g(x)$. Then for each prime p with $\operatorname{gcd}(n, p)=1$, the complex number ζ^{p} is also a root of $g(x)$.
How to deduce the theorem from this statement? Let us take $\zeta_{0}=e^{\frac{2 \pi}{n} i}$, it is clearly a primitive $n^{\text {th }}$ root of 1 , so ζ_{0} is a root of $\Phi_{n}(x)$, hence it is a root of some irreducible divisor $g(x)$ of $\Phi_{n}(x)$ in $\mathbb{Z}[x]$. By the statement above, for any p_{1} not dividing n, the complex number $\zeta_{1}=\zeta_{0}^{p_{1}}$ is also a
root of $g(x)$. Furthermore, by the same statement, for any p_{2} not dividing n, the complex number $\zeta_{2}=\zeta_{1}^{p_{2}}=\zeta_{0}^{p_{1} p_{2}}$ is also a root of $g(x)$, etc., so for any collection of (not necessarily different) primes $p_{1}, p_{2}, \ldots, p_{k}$ not dividing n, the complex number $\zeta_{0}^{p_{1} p_{2} \cdots p_{k}}$ is also a root of $g(x)$. But all primitive $n^{\text {th }}$ roots of 1 are of the form ζ_{0}^{k} with $\operatorname{gcd}(k, n)=1$, so all primitive $n^{\text {th }}$ roots of 1 are roots of $g(x)$, and $g(x)=\Phi_{n}(x)$.

It remains to prove the statement above. Let $\Phi_{n}(x)=g(x) h(x)$, where $g(x)$ is irreducible according to our assumption. Suppose that the statement in question does not hold, so ζ^{p} is a root of $h(x)$. (Note that since p does not divide n, the complex number ζ^{p} is a primitive $n^{\text {th }}$ root of 1). Thus, ζ is a root of the polynomial $h\left(x^{p}\right)$, so $g(x)$ and $h\left(x^{p}\right)$ have common divisors, therefore $h\left(x^{p}\right)$ is divisible by $g(x)$ since $g(x)$ is irreducible. Let us now consider all polynomials modulo p, and denote, for each polynomial $a(x)$, by $[a(x)]$ the same polynomial when considered in $\mathbb{F}_{p}[x]$. It is important to recall that $\left[h\left(x^{p}\right)\right]=\left[h(x)^{p}\right]=[h(x)]^{p}$, because $h\left(x^{p}\right) \equiv(h(x))^{p}(\bmod p)$ [which relies on the Fermat's Little Theorem $a^{p} \equiv a(\bmod p)$ for all $a \in \mathbb{F}_{p}$, and the property $(a+b)^{p} \equiv a^{p}+b^{p}(\bmod p)$ following from the fact that all the binomial coefficients $\binom{p}{k}$ are divisible by p for $0<k<p]$. Let $\left[g_{1}(x)\right]$ be some irreducible divisor of $[g(x)]$ modulo p (although $g(x)$ is irreducible in $\mathbb{Z}[x]$, we cannot be sure that it remains irreducible modulo p). Then $[h(x)]^{p}=\left[h\left(x^{p}\right)\right]$ is divisible by $[g(x)]$, hence is divisible by $\left.g_{1}(x)\right]$, so since $\mathbb{F}_{p}[x]$ is a UFD, we conclude that $[h(x)]$ is divisible by $\left.g_{1}(x)\right]$. Therefore, $\left[\Phi_{n}(x)\right]=[g(x)][h(x)]$ is divisible by $\left.g_{1}(x)\right]^{2}$, so $\left[x^{n}-1\right]$ is divisible by $\left.g_{1}(x)\right]^{2}$. A polynomial is divisible by a square of another polynomial must have common divisors with its derivative (which is clear if we compute the derivative using the product rule), but the derivative of $x^{n}-1$ is $n x^{n-1}$. Since n is not divisible by p, the only factors of $\left[n x^{n-1}\right]$ are powers of $[x]$, which are not divisors of $\left[x^{n}-1\right]$. The contradiction completes the proof.

Our next goal is to demonstrate how to use cyclotomic polynomials to prove the following result (a particular case of the celebrated Dirichlet's theorem):

Theorem 2. For every integer n, there exist infinitely many primes $p \equiv 1(\bmod n)$.
Proof. At the core of the proof of this theorem is the following statement
For every integer n, there exist a integer $A>0$ such that all prime divisors $p>A$ of values of $\Phi_{n}(c)$ at integer points c are congruent to 1 modulo n. In other words, prime divisors of values of the $n^{\text {th }}$ cyclotomic polynomial either are "small" or are congruent to 1 modulo n.
Let us explain how to use this statement to prove Theorem 2. Assume that there are only finitely many primes congruent to 1 modulo n; let p_{1}, \ldots, p_{m} be those primes. Let us consider the number $c=A!p_{1} p_{2} \cdots p_{m}$. The number $k=\Phi_{n}(c)$ is relatively prime to c (since $\Phi_{n}(x)$ divides $x^{n}-1$, the constant term of $\Phi_{n}(x)$ divides the constant term of $x^{n}-1$ and is hence equal to ± 1 for every n), so it is not divisible by any of the primes p_{1}, \ldots, p_{m}, and has no divisors $d \leq A$ either. This almost guarantees that we can find a new prime congruent to 1 modulo n : take any prime divisor p of k, and Lemma ensures that $p \equiv 1(\bmod n)$. The only problem that may occur is that $k= \pm 1$, so it has no prime divisors. In this case, replace c by $N c$ for N large enough, so that $N c$ is greater than all the roots of the equation $\Phi_{n}(x)= \pm 1$, with everything else remaining the same.

It remains to prove the statement we formulated. Let us consider the polynomial $f(x)=(x-$ 1) $\left(x^{2}-1\right) \ldots\left(x^{n-1}-1\right)$. The polynomials $f(x)$ and $\Phi_{n}(x)$ have no common roots, so their gcd in $\mathbb{Q}[x]$ is equal to 1 , hence $a(x) f(x)+b(x) \Phi_{n}(x)=1$ for some $a(x), b(x) \in \mathbb{Q}[x]$. Let A denote the common denominator of all coefficients of $a(x)$ and $b(x)$. Then for $p(x)=A a(x), q(x)=A b(x)$ we have $p(x) f(x)+q(x) \Phi_{n}(x)=A$, and $p(x), q(x) \in \mathbb{Z}[x]$. Assume that a prime number $p>A$ divides $\Phi_{n}(c)$ for some c. Then c is a root of $\Phi_{n}(x)$ modulo p, and consequently, $c^{n} \equiv 1(\bmod p)$. Let us notice that n is the order of c modulo p. Indeed, if $c^{k} \equiv 1(\bmod p)$ for some $k<n$, then c is a
root of $f(x)$ modulo p, but the equality $p(x) f(x)+q(x) \Phi_{n}(x)=A$ shows that $f(x)$ and $\Phi_{n}(x)$ are relatively prime modulo p. Recall that $c^{p-1} \equiv 1(\bmod p)$ by Fermat's Little Theorem, so $p-1$ is divisible by n, the order of c, that is $p \equiv 1(\bmod n)$, and the lemma is proved.

Remark. Most available proofs of Theorem 2 that use cyclotomic polynomials use a different proof of Lemma. The main point that is being made by our proof is that it seems to accumulate the key ideas of elementary number theory: the Euclidean algorithm and its applications, the relationship between $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$, the techniques based on the reduction modulo p, and the multiplicative group of integers modulo p (through Fermat's Little Theorem).

Let us outline another application of cyclotomic polynomials, Wedderburn's Little Theorem.
Theorem 3. Every finite division ring is commutative.
By a ring we mean a set R with two operations (sum and product) satisfying the usual axioms. The product does not have to be commutative, e.g. square matrices of the given size form a ring, and quaternions form a ring too. By a division ring we mean a ring where every nonzero element is invertible, e.g. quaternions. Thus, the theorem states that if R is a finite division ring, then it in fact is a field.

Let us recall several definitions from ring theory that we need in this proof.
For a ring R, its centre $Z(R)$ consists of all elements that commute with all elements from R :

$$
Z(R)=\{z \in R: z r=r z \text { for all } r \in R\}
$$

The centre of a ring is closed under sum and product, and so forms a subring of R. If R is a division ring, then $Z(R)$ is a field, and R is a vector space over this field.

More generally, if $S \subset R$, the centraliser of S is defined as the set of all elements that commute with all elements from S :

$$
C_{S}(R)=\{z \in R: z s=s z \text { for all } s \in S\}
$$

The centraliser of every subset is a subring of R, and in the case of a division ring, a field. Clearly, $C_{R}(R)=Z(R)$.

The last ingredient of the proof we need is the class formula for finite groups. Let G be a finite groups. For $g \in G$, denote by $C(g)$ the conjugacy class of g, that is the set of all elements of the form $h^{-1} g h$, where $h \in G$. Then G is a disjoint union of conjugacy classes. We have $\# C(g)=\frac{\# G}{\# C_{g}}$, where C_{g} is the centraliser subgroup (consisting, as in the case of rings, of all elements that commute with g).

Proof. Our goal is to prove that $Z(R)=R$. Let $q=\# Z(R)$. Since R is a vector space over $Z(R)$, we have $\# R=q^{n}$, where n is the dimension of this vector space. Since R is a division ring, the set $G=R \backslash\{0\}$ is a group. Applying the class formula to this group, we obtain

$$
q^{n}-1=\sum_{\text {conjugacy classes }} \# C(g)=\sum_{\text {conjugacy classes }} \frac{q^{n}-1}{\# C_{g}}
$$

Let us look closer at this sum. It contains terms corresponding to conjugacy classes consisting of a single element (these are conjugacy classes of nonzero elements from the centre) and all other conjugacy classes. Every centraliser C_{g} of such a conjugacy class, with the zero element adjoined to it, forms a subring of R containing $Z(R)$, that is a vector space over $Z(R)$. Let n_{g} be the dimension of that vector space, $n_{g}<n$. We have

$$
q^{n}-1=q-1+\sum_{\substack{\text { non-central } \\ \text { conjugacy classes } \\ 3}} \frac{q^{n}-1}{q^{n_{g}}-1} .
$$

It is easy to see that $\frac{q^{n}-1}{q^{n g}-1}$ is an integer only if n_{g} divides n (and that in general $\operatorname{gcd}\left(q^{n}-1, q^{k}-1\right)=$ $q^{\operatorname{gcd}(n, k)}-1$), so in fact not only $\frac{q^{n}-1}{q^{n g}-1}$ is an integer but also $\frac{x^{n}-1}{x^{n g}-1}$ is a polynomial with integer coefficients. As polynomials in $x, x^{n_{g}}-1$ and $\Phi_{n}(x)$ are coprime, so $x^{n}-1$ is divisible by their product. This means that in our equality above all terms except for the term $q-1$ are divisible by $\Phi_{n}(q)$. Thus $q-1$ is divisible by $\Phi_{n}(q)$. But the latter is impossible for $n>1:|q-\eta|>|q-1|$ for all roots of unity $\eta \neq 1$, so $\left|\Phi_{n}(q)\right|=\prod_{\eta}|q-\eta|>|q-1|$. This completes the proof.

