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This week, we shall discuss an important family of polynomials and their applications in algebra
and number theory.

Recall that a complex number ξ is said to be a primitive nth root of 1, if ξn = 1, and ξk 6= 1 for
1 ≤ k < n. The nth cyclotomic polynomial Φn(x) is the polynomial in C[x] with leading coefficient 1
whose roots (with multiplicity 1) are all primitive nth roots of 1.

Example. We have Φ1(x) = x− 1, Φ2(x) = x+ 1, Φ3(x) = x2 + x+ 1 = x3−1
x−1 , Φ4(x) = x2 + 1.

Primitive nth roots of 1 are complex numbers of the form e
2πk
n
i, where 0 ≤ k 6= n − 1 and

gcd(k, n) = 1. Clearly, the number of such k is equal to φ(n), the number of positive integers not
exceeding n and coprime to n. We proved earlier in class that

∑
d|n
φ(d) = n. In the similar fashion,

we shall now prove a generalisation of this statement, namely we shall show that∏
d|n

Φd(x) = xn − 1.

(It is a generalisation, since comparing the degrees of polynomials on the left and on the right, we
see that

∑
d|n
φ(d) = n). Indeed, each root of the polynomial on the right is a complex number of the

form e
2πk
n
i, where 0 ≤ k 6= n− 1. If we bring the fraction k

n to lowest term, we shall get a primitive
root of the degree equal to the denominator (which is a divisor of n, and all primitive roots for all
divisors appear like that.

The formula we just proved implies the following result.

Lemma. Cyclotomic polynomials have integer coefficients: Φn(x) ∈ Z[x] for all n.

Proof. Induction on n: if for all m < n the polynomials Φm(x) have integer coefficients, then clearly

Φn(x) =
xn − 1∏

d|n,d<n Φd(x)

has integer coefficients as well. �

Let us now prove a result on cyclotomic polynomials that is important for Galois theory.

Theorem 1. For each n ≥ 1, the cyclotomic polynomial Φn(x) is irreducible in Z[x].

Proof. Let us show that this theorem can be deduced from the following statement (and then prove
that statement):

Let g(x) be an irreducible divisor of Φn(x) in Z[x], and let ζ be a complex root of
g(x). Then for each prime p with gcd(n, p) = 1, the complex number ζp is also a
root of g(x).

How to deduce the theorem from this statement? Let us take ζ0 = e
2π
n
i, it is clearly a primitive

nth root of 1, so ζ0 is a root of Φn(x), hence it is a root of some irreducible divisor g(x) of Φn(x)
in Z[x]. By the statement above, for any p1 not dividing n, the complex number ζ1 = ζp10 is also a
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root of g(x). Furthermore, by the same statement, for any p2 not dividing n, the complex number
ζ2 = ζp21 = ζp1p20 is also a root of g(x), etc., so for any collection of (not necessarily different) primes
p1, p2, . . . , pk not dividing n, the complex number ζp1p2···pk0 is also a root of g(x). But all primitive
nth roots of 1 are of the form ζk0 with gcd(k, n) = 1, so all primitive nth roots of 1 are roots of g(x),
and g(x) = Φn(x).

It remains to prove the statement above. Let Φn(x) = g(x)h(x), where g(x) is irreducible
according to our assumption. Suppose that the statement in question does not hold, so ζp is a
root of h(x). (Note that since p does not divide n, the complex number ζp is a primitive nth

root of 1). Thus, ζ is a root of the polynomial h(xp), so g(x) and h(xp) have common divisors,
therefore h(xp) is divisible by g(x) since g(x) is irreducible. Let us now consider all polynomials
modulo p, and denote, for each polynomial a(x), by [a(x)] the same polynomial when considered in
Fp[x]. It is important to recall that [h(xp)] = [h(x)p] = [h(x)]p, because h(xp) ≡ (h(x))p (mod p)
[which relies on the Fermat’s Little Theorem ap ≡ a (mod p) for all a ∈ Fp, and the property
(a+ b)p ≡ ap+ bp (mod p) following from the fact that all the binomial coefficients

(
p
k

)
are divisible

by p for 0 < k < p]. Let [g1(x)] be some irreducible divisor of [g(x)] modulo p (although g(x) is
irreducible in Z[x], we cannot be sure that it remains irreducible modulo p). Then [h(x)]p = [h(xp)]
is divisible by [g(x)], hence is divisible by g1(x)], so since Fp[x] is a UFD, we conclude that [h(x)] is
divisible by g1(x)]. Therefore, [Φn(x)] = [g(x)][h(x)] is divisible by g1(x)]2, so [xn − 1] is divisible
by g1(x)]2. A polynomial is divisible by a square of another polynomial must have common divisors
with its derivative (which is clear if we compute the derivative using the product rule), but the
derivative of xn − 1 is nxn−1. Since n is not divisible by p, the only factors of [nxn−1] are powers
of [x], which are not divisors of [xn − 1]. The contradiction completes the proof. �

Our next goal is to demonstrate how to use cyclotomic polynomials to prove the following result
(a particular case of the celebrated Dirichlet’s theorem):

Theorem 2. For every integer n, there exist infinitely many primes p ≡ 1 (mod n).

Proof. At the core of the proof of this theorem is the following statement

For every integer n, there exist a integer A > 0 such that all prime divisors p > A
of values of Φn(c) at integer points c are congruent to 1 modulo n. In other words,
prime divisors of values of the nth cyclotomic polynomial either are “small” or are
congruent to 1 modulo n.

Let us explain how to use this statement to prove Theorem 2. Assume that there are only
finitely many primes congruent to 1 modulo n; let p1, . . . , pm be those primes. Let us consider the
number c = A!p1p2 · · · pm. The number k = Φn(c) is relatively prime to c (since Φn(x) divides
xn− 1, the constant term of Φn(x) divides the constant term of xn− 1 and is hence equal to ±1 for
every n), so it is not divisible by any of the primes p1, . . . , pm, and has no divisors d ≤ A either.
This almost guarantees that we can find a new prime congruent to 1 modulo n: take any prime
divisor p of k, and Lemma ensures that p ≡ 1 (mod n). The only problem that may occur is that
k = ±1, so it has no prime divisors. In this case, replace c by Nc for N large enough, so that Nc
is greater than all the roots of the equation Φn(x) = ±1, with everything else remaining the same.

It remains to prove the statement we formulated. Let us consider the polynomial f(x) = (x −
1)(x2 − 1) . . . (xn−1 − 1). The polynomials f(x) and Φn(x) have no common roots, so their gcd in
Q[x] is equal to 1, hence a(x)f(x) + b(x)Φn(x) = 1 for some a(x), b(x) ∈ Q[x]. Let A denote the
common denominator of all coefficients of a(x) and b(x). Then for p(x) = Aa(x), q(x) = Ab(x) we
have p(x)f(x) + q(x)Φn(x) = A, and p(x), q(x) ∈ Z[x]. Assume that a prime number p > A divides
Φn(c) for some c. Then c is a root of Φn(x) modulo p, and consequently, cn ≡ 1 (mod p). Let us
notice that n is the order of c modulo p. Indeed, if ck ≡ 1 (mod p) for some k < n, then c is a
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root of f(x) modulo p, but the equality p(x)f(x) + q(x)Φn(x) = A shows that f(x) and Φn(x) are
relatively prime modulo p. Recall that cp−1 ≡ 1 (mod p) by Fermat’s Little Theorem, so p − 1 is
divisible by n, the order of c, that is p ≡ 1 (mod n), and the lemma is proved. �

Remark. Most available proofs of Theorem 2 that use cyclotomic polynomials use a different
proof of Lemma. The main point that is being made by our proof is that it seems to accumulate
the key ideas of elementary number theory: the Euclidean algorithm and its applications, the
relationship between Q[x] and Z[x], the techniques based on the reduction modulo p, and the
multiplicative group of integers modulo p (through Fermat’s Little Theorem).

Let us outline another application of cyclotomic polynomials, Wedderburn’s Little Theorem.

Theorem 3. Every finite division ring is commutative.

By a ring we mean a set R with two operations (sum and product) satisfying the usual axioms.
The product does not have to be commutative, e.g. square matrices of the given size form a ring,
and quaternions form a ring too. By a division ring we mean a ring where every nonzero element
is invertible, e.g. quaternions. Thus, the theorem states that if R is a finite division ring, then it
in fact is a field.

Let us recall several definitions from ring theory that we need in this proof.
For a ring R, its centre Z(R) consists of all elements that commute with all elements from R:

Z(R) = {z ∈ R : zr = rz for all r ∈ R}.

The centre of a ring is closed under sum and product, and so forms a subring of R. If R is a division
ring, then Z(R) is a field, and R is a vector space over this field.

More generally, if S ⊂ R, the centraliser of S is defined as the set of all elements that commute
with all elements from S:

CS(R) = {z ∈ R : zs = sz for all s ∈ S}.

The centraliser of every subset is a subring of R, and in the case of a division ring, a field. Clearly,
CR(R) = Z(R).

The last ingredient of the proof we need is the class formula for finite groups. Let G be a finite
groups. For g ∈ G, denote by C(g) the conjugacy class of g, that is the set of all elements of the

form h−1gh, where h ∈ G. Then G is a disjoint union of conjugacy classes. We have #C(g) = #G
#Cg

,

where Cg is the centraliser subgroup (consisting, as in the case of rings, of all elements that commute
with g).

Proof. Our goal is to prove that Z(R) = R. Let q = #Z(R). Since R is a vector space over Z(R),
we have #R = qn, where n is the dimension of this vector space. Since R is a division ring, the set
G = R \ {0} is a group. Applying the class formula to this group, we obtain

qn − 1 =
∑

conjugacy classes

#C(g) =
∑

conjugacy classes

qn − 1

#Cg
.

Let us look closer at this sum. It contains terms corresponding to conjugacy classes consisting of
a single element (these are conjugacy classes of nonzero elements from the centre) and all other
conjugacy classes. Every centraliser Cg of such a conjugacy class, with the zero element adjoined to
it, forms a subring of R containing Z(R), that is a vector space over Z(R). Let ng be the dimension
of that vector space, ng < n. We have

qn − 1 = q − 1 +
∑

non-central
conjugacy classes

qn − 1

qng − 1
.
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It is easy to see that qn−1
qng−1 is an integer only if ng divides n (and that in general gcd(qn−1, qk−1) =

qgcd(n,k) − 1), so in fact not only qn−1
qng−1 is an integer but also xn−1

xng−1 is a polynomial with integer

coefficients. As polynomials in x, xng − 1 and Φn(x) are coprime, so xn − 1 is divisible by their
product. This means that in our equality above all terms except for the term q− 1 are divisible by
Φn(q). Thus q− 1 is divisible by Φn(q). But the latter is impossible for n > 1: |q− η| > |q− 1| for
all roots of unity η 6= 1, so |Φn(q)| =

∏
η |q − η| > |q − 1|. This completes the proof. �
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