CYCLOTOMIC POLYNOMIALS AND THEIR APPLICATIONS (MA2316, NINTH WEEK)

VLADIMIR DOTSENKO

This week, we shall discuss an important family of polynomials and their applications in algebra and number theory.

Recall that a complex number ξ is said to be a primitive n^{th} root of 1, if $\xi^n = 1$, and $\xi^k \neq 1$ for $1 \leq k < n$. The n^{th} cyclotomic polynomial $\Phi_n(x)$ is the polynomial in $\mathbb{C}[x]$ with leading coefficient 1 whose roots (with multiplicity 1) are all primitive n^{th} roots of 1.

Example. We have $\Phi_1(x) = x - 1$, $\Phi_2(x) = x + 1$, $\Phi_3(x) = x^2 + x + 1 = \frac{x^3 - 1}{x - 1}$, $\Phi_4(x) = x^2 + 1$.

Primitive n^{th} roots of 1 are complex numbers of the form $e^{\frac{2\pi k}{n}i}$, where $0 \leq k \neq n-1$ and gcd(k,n) = 1. Clearly, the number of such k is equal to $\phi(n)$, the number of positive integers not exceeding n and coprime to n. We proved earlier in class that $\sum_{d|n} \phi(d) = n$. In the similar fashion,

we shall now prove a generalisation of this statement, namely we shall show that

$$\prod_{d|n} \Phi_d(x) = x^n - 1$$

(It is a generalisation, since comparing the degrees of polynomials on the left and on the right, we see that $\sum_{d|n} \phi(d) = n$). Indeed, each root of the polynomial on the right is a complex number of the

form $e^{\frac{2\pi k}{n}i}$, where $0 \le k \ne n-1$. If we bring the fraction $\frac{k}{n}$ to lowest term, we shall get a primitive root of the degree equal to the denominator (which is a divisor of n, and all primitive roots for all divisors appear like that.

The formula we just proved implies the following result.

Lemma. Cyclotomic polynomials have integer coefficients: $\Phi_n(x) \in \mathbb{Z}[x]$ for all n.

Proof. Induction on n: if for all m < n the polynomials $\Phi_m(x)$ have integer coefficients, then clearly

$$\Phi_n(x) = \frac{x^n - 1}{\prod_{d \mid n, d < n} \Phi_d(x)}$$

has integer coefficients as well.

Let us now prove a result on cyclotomic polynomials that is important for Galois theory.

Theorem 1. For each $n \ge 1$, the cyclotomic polynomial $\Phi_n(x)$ is irreducible in $\mathbb{Z}[x]$.

Proof. Let us show that this theorem can be deduced from the following statement (and then prove that statement):

Let g(x) be an irreducible divisor of $\Phi_n(x)$ in $\mathbb{Z}[x]$, and let ζ be a complex root of g(x). Then for each prime p with gcd(n,p) = 1, the complex number ζ^p is also a root of g(x).

How to deduce the theorem from this statement? Let us take $\zeta_0 = e^{\frac{2\pi}{n}i}$, it is clearly a primitive n^{th} root of 1, so ζ_0 is a root of $\Phi_n(x)$, hence it is a root of some irreducible divisor g(x) of $\Phi_n(x)$ in $\mathbb{Z}[x]$. By the statement above, for any p_1 not dividing n, the complex number $\zeta_1 = \zeta_0^{p_1}$ is also a

root of g(x). Furthermore, by the same statement, for any p_2 not dividing n, the complex number $\zeta_2 = \zeta_1^{p_2} = \zeta_0^{p_1 p_2}$ is also a root of g(x), etc., so for any collection of (not necessarily different) primes p_1, p_2, \ldots, p_k not dividing n, the complex number $\zeta_0^{p_1 p_2 \cdots p_k}$ is also a root of g(x). But all primitive n^{th} roots of 1 are of the form ζ_0^k with gcd(k, n) = 1, so all primitive n^{th} roots of 1 are roots of g(x).

It remains to prove the statement above. Let $\Phi_n(x) = g(x)h(x)$, where g(x) is irreducible according to our assumption. Suppose that the statement in question does not hold, so ζ^p is a root of h(x). (Note that since p does not divide n, the complex number ζ^p is a primitive n^{th} root of 1). Thus, ζ is a root of the polynomial $h(x^p)$, so g(x) and $h(x^p)$ have common divisors, therefore $h(x^p)$ is divisible by g(x) since g(x) is irreducible. Let us now consider all polynomials modulo p, and denote, for each polynomial a(x), by [a(x)] the same polynomial when considered in $\mathbb{F}_p[x]$. It is important to recall that $[h(x^p)] = [h(x)^p] = [h(x)]^p$, because $h(x^p) \equiv (h(x))^p \pmod{p}$ [which relies on the Fermat's Little Theorem $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{F}_p$, and the property $(a+b)^p \equiv a^p + b^p \pmod{p}$ following from the fact that all the binomial coefficients $\binom{p}{k}$ are divisible by p for 0 < k < p]. Let $[g_1(x)]$ be some irreducible divisor of [g(x)] modulo p (although g(x) is irreducible in $\mathbb{Z}[x]$, we cannot be sure that it remains irreducible modulo p). Then $[h(x)]^p = [h(x^p)]$ is divisible by [g(x)], hence is divisible by $g_1(x)$, so since $\mathbb{F}_p[x]$ is a UFD, we conclude that [h(x)] is divisible by $g_1(x)$]. Therefore, $[\Phi_n(x)] = [g(x)][h(x)]$ is divisible by $g_1(x)]^2$, so $[x^n - 1]$ is divisible by $g_1(x)$ ². A polynomial is divisible by a square of another polynomial must have common divisors with its derivative (which is clear if we compute the derivative using the product rule), but the derivative of $x^n - 1$ is nx^{n-1} . Since n is not divisible by p, the only factors of $[nx^{n-1}]$ are powers of [x], which are not divisors of $[x^n - 1]$. The contradiction completes the proof.

Our next goal is to demonstrate how to use cyclotomic polynomials to prove the following result (a particular case of the celebrated Dirichlet's theorem):

Theorem 2. For every integer n, there exist infinitely many primes $p \equiv 1 \pmod{n}$.

Proof. At the core of the proof of this theorem is the following statement

For every integer n, there exist a integer A > 0 such that all prime divisors p > A of values of $\Phi_n(c)$ at integer points c are congruent to 1 modulo n. In other words, prime divisors of values of the n^{th} cyclotomic polynomial either are "small" or are congruent to 1 modulo n.

Let us explain how to use this statement to prove Theorem 2. Assume that there are only finitely many primes congruent to 1 modulo n; let p_1, \ldots, p_m be those primes. Let us consider the number $c = A!p_1p_2\cdots p_m$. The number $k = \Phi_n(c)$ is relatively prime to c (since $\Phi_n(x)$ divides $x^n - 1$, the constant term of $\Phi_n(x)$ divides the constant term of $x^n - 1$ and is hence equal to ± 1 for every n), so it is not divisible by any of the primes p_1, \ldots, p_m , and has no divisors $d \leq A$ either. This almost guarantees that we can find a new prime congruent to 1 modulo n: take any prime divisor p of k, and Lemma ensures that $p \equiv 1 \pmod{n}$. The only problem that may occur is that $k = \pm 1$, so it has no prime divisors. In this case, replace c by Nc for N large enough, so that Ncis greater than all the roots of the equation $\Phi_n(x) = \pm 1$, with everything else remaining the same.

It remains to prove the statement we formulated. Let us consider the polynomial $f(x) = (x - 1)(x^2 - 1) \dots (x^{n-1} - 1)$. The polynomials f(x) and $\Phi_n(x)$ have no common roots, so their gcd in $\mathbb{Q}[x]$ is equal to 1, hence $a(x)f(x) + b(x)\Phi_n(x) = 1$ for some $a(x), b(x) \in \mathbb{Q}[x]$. Let A denote the common denominator of all coefficients of a(x) and b(x). Then for p(x) = Aa(x), q(x) = Ab(x) we have $p(x)f(x) + q(x)\Phi_n(x) = A$, and $p(x), q(x) \in \mathbb{Z}[x]$. Assume that a prime number p > A divides $\Phi_n(c)$ for some c. Then c is a root of $\Phi_n(x)$ modulo p, and consequently, $c^n \equiv 1 \pmod{p}$. Let us notice that n is the order of c modulo p. Indeed, if $c^k \equiv 1 \pmod{p}$ for some k < n, then c is a

root of f(x) modulo p, but the equality $p(x)f(x) + q(x)\Phi_n(x) = A$ shows that f(x) and $\Phi_n(x)$ are relatively prime modulo p. Recall that $c^{p-1} \equiv 1 \pmod{p}$ by Fermat's Little Theorem, so p-1 is divisible by n, the order of c, that is $p \equiv 1 \pmod{n}$, and the lemma is proved.

Remark. Most available proofs of Theorem 2 that use cyclotomic polynomials use a different proof of Lemma. The main point that is being made by our proof is that it seems to accumulate the key ideas of elementary number theory: the Euclidean algorithm and its applications, the relationship between $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$, the techniques based on the reduction modulo p, and the multiplicative group of integers modulo p (through Fermat's Little Theorem).

Let us outline another application of cyclotomic polynomials, Wedderburn's Little Theorem.

Theorem 3. Every finite division ring is commutative.

By a ring we mean a set R with two operations (sum and product) satisfying the usual axioms. The product does not have to be commutative, e.g. square matrices of the given size form a ring, and quaternions form a ring too. By a division ring we mean a ring where every nonzero element is invertible, e.g. quaternions. Thus, the theorem states that if R is a finite division ring, then it in fact is a field.

Let us recall several definitions from ring theory that we need in this proof.

For a ring R, its centre Z(R) consists of all elements that commute with all elements from R:

$$Z(R) = \{ z \in R \colon zr = rz \text{ for all } r \in R \}.$$

The centre of a ring is closed under sum and product, and so forms a subring of R. If R is a division ring, then Z(R) is a field, and R is a vector space over this field.

More generally, if $S \subset R$, the centraliser of S is defined as the set of all elements that commute with all elements from S:

$$C_S(R) = \{ z \in R \colon zs = sz \text{ for all } s \in S \}.$$

The centraliser of every subset is a subring of R, and in the case of a division ring, a field. Clearly, $C_R(R) = Z(R)$.

The last ingredient of the proof we need is the class formula for finite groups. Let G be a finite groups. For $g \in G$, denote by C(g) the conjugacy class of g, that is the set of all elements of the form $h^{-1}gh$, where $h \in G$. Then G is a disjoint union of conjugacy classes. We have $\#C(g) = \frac{\#G}{\#C_g}$, where C_g is the centraliser subgroup (consisting, as in the case of rings, of all elements that commute with g).

Proof. Our goal is to prove that Z(R) = R. Let q = #Z(R). Since R is a vector space over Z(R), we have $\#R = q^n$, where n is the dimension of this vector space. Since R is a division ring, the set $G = R \setminus \{0\}$ is a group. Applying the class formula to this group, we obtain

$$q^n - 1 = \sum_{\text{conjugacy classes}} \#C(g) = \sum_{\text{conjugacy classes}} \frac{q^n - 1}{\#C_g}.$$

Let us look closer at this sum. It contains terms corresponding to conjugacy classes consisting of a single element (these are conjugacy classes of nonzero elements from the centre) and all other conjugacy classes. Every centraliser C_g of such a conjugacy class, with the zero element adjoined to it, forms a subring of R containing Z(R), that is a vector space over Z(R). Let n_g be the dimension of that vector space, $n_g < n$. We have

$$q^{n} - 1 = q - 1 + \sum_{\substack{\text{non-central} \\ \text{conjugacy classes}}} \frac{q^{n} - 1}{q^{n_{g}} - 1}.$$

It is easy to see that $\frac{q^n-1}{q^{n_g}-1}$ is an integer only if n_g divides n (and that in general $gcd(q^n-1,q^k-1) = q^{gcd(n,k)} - 1$), so in fact not only $\frac{q^n-1}{q^{n_g}-1}$ is an integer but also $\frac{x^n-1}{x^{n_g}-1}$ is a polynomial with integer coefficients. As polynomials in x, $x^{n_g} - 1$ and $\Phi_n(x)$ are coprime, so $x^n - 1$ is divisible by their product. This means that in our equality above all terms except for the term q-1 are divisible by $\Phi_n(q)$. Thus q-1 is divisible by $\Phi_n(q)$. But the latter is impossible for n > 1: $|q-\eta| > |q-1|$ for all roots of unity $\eta \neq 1$, so $|\Phi_n(q)| = \prod_{\eta} |q-\eta| > |q-1|$. This completes the proof. \Box