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In this lecture, we shall discuss some “Diophantine equations for polynomials”, that is solutions
to polynomial equations (in several variables) that are themselves polynomials (in one variable).

All key results here will follow from the following result, which was proved surprisingly recently
(early 1980s). Let us denote by N0(f) the number of distinct complex zeros of a polynomial f , for
example N0(x

2 + 1) = 2, N0(x
100) = 1, N0(5) = 0.

Theorem 1 (Mason–Stothers Theorem). Suppose that f(x), g(x), h(x) ∈ C[x] are coprime polyno-
mials, and not all of them are constant. If f + g + h = 0, then

max(deg(f),deg(g), deg(h)) ≤ N0(fgh)− 1.

The following proof is probably the shortest one known. A prominent American mathematician
Serge Lang mentioned this theorem to a then high school student Noah Snyder (now a renowned
mathematician himself), who came up with this elegant proof which is shorter and clearer than
ones known previously.

Proof. Let us recall that each root of multiplicity k of a given polynomial f(x) is a root of
multiplicity k − 1 of f ′(x). Indeed, if f(x) = (x − a)kg(x) where g(a) 6= 0, then f ′(x) =
k(x − a)k−1g(x) + (x − a)kg′(x) = (x − a)k−1(kg(x) + (x − a)g′(x)), and the expression in the
brackets does not vanish at x = a. This implies that

deg gcd(f, f ′) = deg(f)−N0(f).

Indeed, if f(x) = (x−a1)k1(x−a2)k2 · · · (x−am)km , then our previous remark shows that gcd(f, f ′) =
(x− a1)

k1−1(x− a2)
k2−1 · · · (x− am)km−1, so

deg gcd(f, f ′) = k1 − 1 + k2 − 1 + · · ·+ km − 1 = (k1 + · · ·+ km)−m = deg(f)−N0(f).

Now everything is ready for our proof. Note that since f + g + h = 0, we have f ′ + g′ + h′ = 0,
and hence fh′ − f ′h = f(−f ′ − g′) − f ′(−f − g) = f ′g − fg′. Also, we remark that since not all
of the f, g, h are constant, there are at least two non-constant polynomials among them. Without
loss of generality, these are f and g. That implies f ′g − fg′ 6= 0, for otherwise, since f and g are
coprime, we would conclude that f | f ′, which is impossible. Finally, we note that gcd(f, f ′) and
gcd(g, g′) manifestly divide f ′g−fg′, but since we know that f ′g−fg′ = fh′−f ′h, we also conclude
that gcd(h, h′) divides f ′g − fg′. Note that since f, g, h are coprime, the polynomials gcd(f, f ′),
gcd(g, g′), and gcd(h, h′) are coprime, so f ′g − fg′ is divisible by their product. As a consequence,

deg(f)−N0(f) + deg(g)−N0(g) + deg(h)−N0(h) =

= deg(gcd(f, f ′) gcd(g, g′) gcd(h, h′)) ≤ deg(f ′g − fg′) ≤ deg(f) + deg(g)− 1,

or deg(h) ≤ N0(f) + N0(g) + N0(h) − 1 = N0(fgh) − 1. (The latter step again uses that f, g, h
are coprime). Repeating the last step but replacing deg(f ′g − fg′) ≤ deg(f) + deg(g) − 1 by
deg(f ′g−fg′) = deg(fh′−f ′h) ≤ deg(f)+deg(h)−1, we get deg(g) ≤ N0(f)+N0(g)+N0(h)−1 =
N0(fgh)− 1, and a similar inequality for deg(f) as well. We conclude that

max(deg(f), deg(g),deg(h)) ≤ N0(fgh)− 1,
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as required. �

Corollary (Fermat’s Last Theorem for polynomials). Let f(x), g(x), h(x) ∈ C[x] be coprime poly-
nomials satisfying fn + gn = hn for some n ≥ 3. Then these polynomials are constant.

(Of course, unlike integers, we cannot say that there are no solutions, since in C we can extract
nth roots, and so for example 1n + 1n = ( n

√
2)n is a solution).

Proof. Assume the contrary, and apply Mason–Stothers to fn, gn,−hn:

n deg(f) ≤ N0(f
ngnhn)− 1 = N0(fgh)− 1 ≤ deg(f) + deg(g) + deg(h)− 1,

n deg(g) ≤ N0(f
ngnhn)− 1 = N0(fgh)− 1 ≤ deg(f) + deg(g) + deg(h)− 1,

n deg(h) ≤ N0(f
ngnhn)− 1 = N0(fgh)− 1 ≤ deg(f) + deg(g) + deg(h)− 1.

Adding these inequalities, we get

n(deg(f) + deg(g) + deg(h)) ≤ 3(deg(f) + deg(g) + deg(h))− 3,

so

(n− 3)(deg(f) + deg(g) + deg(h)) ≤ −3,

which for n ≥ 3 is clearly a contradiction. �

Remark. Later, if you learn some algebraic geometry, you will see another very elegant proof of this
last result. Recall that when we enumerated Pythagorean triples, we first obtained a parametrisation

of all rational points on the circle x2 + y2 = 1 of the form
(

2k
k2+1

, k
2−1

k2+1

)
. Our result states that for

higher exponents, nothing like that would work, that is the “Fermat’s curve” xn + yn = 1 does not
admit a rational parametrisation. Algebraic geometry explains it very clearly indeed, saying that
the Fermat’s curve, viewed as a complex curve, that is something of R-dimensions 2, looks like a

sphere with (n−1)(n−2)
2 handles attached to it (e.g. for n = 3 looks like a torus), and that existence

of a rational parametrisation would imply that there can be no handles, so it must be just a sphere.

This last result can be generalised as follows.

Corollary. Let p, q, r be positive integers, and let f(x), g(x), h(x) ∈ C[x] be coprime polynomials
satisfying fp + gq = hr, and not all of them are constant. Then 1

p + 1
q + 1

r > 1.

Proof. Assume the contrary, and apply Mason–Stothers to fp, gq,−hr:

p deg(f) ≤ N0(f
ngnhn)− 1 = N0(fgh)− 1 ≤ deg(fgh)− 1 < deg(fgh),

q deg(g) ≤ N0(f
ngnhn)− 1 = N0(fgh)− 1 ≤ deg(fgh)− 1 < deg(fgh),

r deg(h) ≤ N0(f
ngnhn)− 1 = N0(fgh)− 1 ≤ deg(fgh)− 1 < deg(fgh),

so we have
deg(f)

deg(fgh)
<

1

p
,

deg(g)

deg(fgh)
<

1

q
,

deg(h)

deg(fgh)
<

1

r
,

and adding these inequalities, we get

1 <
1

p
+

1

q
+

1

r
,

as claimed. �

Remark. The triples 2 ≤ p ≤ q ≤ r satisfying the above inequality are (2, 2,m), (2, 3, 3), (2, 3, 4),
(2, 3, 5). Solutions to the corresponding Diophantine equations are closely related to regular polyhe-
dra in three dimensions.
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Corollary. The elliptic curve y2 = x3 − x does not admit a rational parametrisation x = a(t)
b(t) ,

y = c(t)
d(t) .

Proof. We assume that a(t)
b(t) and c(t)

d(t) are written in lowest terms, that is gcd(a, b) = gcd(c, d) = 1.

Clearing the denominators, we obtain

c2b3 = a3d2 − ab2d2,

so b2 | d2, implying b | d, and d = kb. Also, d2 | b3, so k2b2 | b3, k2 | b, and b = k2l. So we have
d = kb = k3l and b = k2l. Substituting these into the original equation, we get

c2k6l3 = a3k6l2 − ak4l2k6l2,

or
c2l = a3 − ak4l2,

so l | a3. But l | b as well, so l is a constant. Rewriting the last equation as

(c
√
l)2 = a(a2 − (k4l)2),

and noticing that gcd(a, a2 − (k4l)2) = 1 since k | b and gcd(a, b) = 1, we conclude that a = A2

and a2− (k4l)2 = B2 for some A, B, since the product of two coprime polynomials is a square only
when both of them are squares. We observe that in that case

A4 = (k4l)2 + B2 = (k2
√
l)4 + B2,

and gcd(A, k2
√
l) = 1, so the polynomials A, k2

√
l, B are coprime, and the previous corollary shows

that they must be constant, in which case a is a constant, k is a constant, so b is a constant, and
therefore x is constant, not a rational parametrisation. �

Exercise. Analyse the proof of the last statement, where until the very final step we in fact
were not using much about polynomials, mostly just divisibility. Try to use that proof to classify
Q-points on the curve y2 = x3 − x.
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