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Last time, we discussed Hensel’s lemma which ensured that under some technical assumptions
it is possible to “lift” a solution modulo pn to a solution modulo pn+1. Here lift means that the
two solutions actually agree modulo a high power of p (at least pn/2). This means that as we keep
lifting solutions so that the equation is satisfied modulo higher and higher powers of p, the digits
in the base p expansions of those solutions stabilise, since we are only adding multiples of higher
and higher powers of p.

Example. The equation x2 ≡ 5 (mod 11) has a solution x = 4. Also, (x2 − 5)′ = 2x, so the value

of the derivative at x = 4 is not divisible by 11, and hence Hensel’s lemma is applicable, and we

may lift solutions higher up. For modulo 112 solutions, look for it in the form 4 + 11k, then

(4 + 11k)2 − 5 ≡ 11 + 88k = 11(1 + 8k) (mod 112),

so k = 4 would do. For modulo 113 solutions, look for it in the form 4 + 11 · 4 + 112l = 48 + 112l.
We have

(48 + 112l)2 − 5 ≡ 2299 + 2 · 48 · 112l = 112(19 + 96l) (mod 113).

To satisfy the congruence modulo 113, we need 19 + 96l ≡ −3− 3l (mod 11), so l = 10, and so on.

Since at further steps we shall be adding multiples of 113, we may conclude that the last digit of the

base 11 representation of each solution will be 4, the next-to-last one will be 4, the previous one 10
etc.

These digits do stabilise, but of course the problem is that the numbers we construct generally
keep growing, so their base p expansions get longer and longer. Therefore, this stabilisation of
digits does not lead to an “honest” integer after infinitely many iterations. That infinite base p

expansion does not make sense if we restrict ourselves to real or complex numbers. However, it
turns out that there is a field where expansions like that naturally belong.

Definition. We shall say that a function ‖ · ‖ : Q → R+ = {x ∈ R : x ≥ 0} is an absolute value if

• ‖x‖ = 0 if and only x = 0,
• ‖x · y‖ = ‖x‖ · ‖y‖ for all x, y,

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖.
Example. The usual absolute value |x| is an absolute value on Q.

Example. The p-adic absolute value defined as

‖x‖p =

{

p−k, if 0 6= x = pk a
b with gcd(a, p) = gcd(b, p) = 1,

0, if x = 0.

is an absolute value on Q satisfying the “ultrametric inequality”

‖x+ y‖p ≤ max(‖x‖p, ‖y‖p).
In fact, and that is an interesting thing on its own, every absolute value on rationals can be

derived from the two examples we just mentioned. Let us prove it.
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Theorem 1 (Ostrowski). Suppose that ‖ · ‖ is an absolute value on rational numbers. Then either

there exists a nonnegative real number c such that ‖x‖ = |x|c for all x or there exists a nonnegative

real number c and a prime p such that ‖x‖ = ‖x‖cp for all x.

Proof. Let us consider the values ‖n‖, where n is a positive integer.
Suppose that ‖m‖ > 1 for some m. Let us take some other number n and consider the base n

expansion of some power mr:

mr = a0n
k + a1n

k−1 + · · ·+ ak−1n+ ak,

where 0 ≤ ai ≤ n− 1, and k ≤ logn(m
r) = r logn(m). We have

‖m‖r = ‖mr‖ ≤ ‖a0‖‖n‖k + ‖a1‖‖n‖k−1 + · · · + ‖ak−1‖‖n‖+ ‖ak‖ ≤ (k + 1)

(

max
0≤s≤n−1

‖s‖
)

‖n‖k,

therefore

‖m‖ ≤ r

√

(k + 1) max
0≤s≤n−1

‖s‖‖n‖k

r ≤ C1/r‖n‖logn(m),

where C = (k + 1) max
0≤s≤n−1

‖s‖ does not depend on r. Therefore, as r → ∞, we have

‖m‖ ≤ ‖n‖logn(m) = ‖n‖
ln(m)
ln(n) ,

or

‖m‖
1

ln(m) ≤ ‖n‖
1

ln(n) .

From this, we deduce that ‖n‖ > 1 for all n > 1, and then, swapping the roles of n and m, that

‖m‖
1

ln(m) = ‖n‖
1

ln(n) .

Denoting ‖m‖
1

ln(m) = ec, we see that ‖m‖ = mc for all positive integers m > 1. Also, ‖ ± 1‖ = 1
for any absolute value since ‖1‖2 = ‖12‖ = ‖1‖ = ‖(−1)2‖ = ‖ − 1‖2, therefore ‖m‖ = |m|c for all

integers m, and finally since
∥

∥

∥

p
q

∥

∥

∥
‖q‖ =

∥

∥

∥

p
q q

∥

∥

∥
= ‖p‖, we have ‖r‖ = |r|c for all rational numbers r.

The only case we have not covered yet is that of ‖n‖ ≤ 1 for all positive integers n (and hence
for all integers n since ‖ − 1‖ = 1). Let us take the smallest positive n for which ‖n‖ < 1. (If no
such n exists, it is easy to show that ‖r‖ = 1 for all rational r. This number must be prime, for
if it is not a prime, n = n1n2, we have ‖n‖ = ‖n1‖‖n2‖, and by minimality of n we conclude that
‖n1‖ = ‖n2‖ = 1, a contradiction with ‖n‖ < 1. Thus n = p is a prime number. Let us show that
for all other primes q we have ‖q‖ = 1. Assume the contrary. Then there exists a number N such
that ‖p‖N < 1

2 and ‖q‖N < 1
2 . We have apN + bqN = 1 for some integers a, b since pN and qN are

coprime. Hence

1 = ‖1‖ = ‖apN + bqN‖ ≤ ‖a‖‖p‖N + ‖b‖‖q‖N ≤ 1 · 1
2
+ 1 · 1

2
= 1,

a contradiction. Let ‖p‖ = λ < 1. Denoting c = − logp λ, we see that ‖p‖ = ‖p‖cp. Also, for any
other prime q we trivially have ‖q‖ = ‖q‖cp, hence as above ‖n‖ = ‖n‖cp for all integers n, and
‖r‖ = ‖r‖cp for all rational numbers r. �

Back to the main topic, one of the ways to use an absolute value is to define a metric d(x, y) =
‖x−y‖, and to complete Q with respect to that metric (that is, look at equivalence classes of Cauchy
sequences with respect to that metric). If we take the usual absolute value, we get R. If we take
‖ · ‖p, we get what is called the field of p-adic numbers and is denoted Qp. A sequence of integer
numbers is a Cauchy sequence if and only if their differences are divisible by higher and higher
powers of p. Thus, the solutions constructed by the method of Hensel’s lemma form a Cauchy
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sequence, which converges in Qp to an element which is a genuine solution to the corresponding
equation.

If a polynomial equation has a rational solution, it has a p-adic solution, since Q ⊂ Qp. Of
course, the variety of roots for p-adic equations is wider,, for example in the beginning of this
note we essentially proved that

√
5 exists in Q11. It turns out that there are classes of polynomial

equations for which one can prove that they have rational solutions if and only if they have real
solutions and they have p-adic solutions for all p. For example, all quadratic equations, possibly
with many unknowns, satisfy that property (“Hasse–Minkowski principle”). This makes dealing
with equations like that much easier, since checking existence of solutions in real numbers can
be done using tricks from analysis, and checking existence of solutions in p-adic numbers usually
just requires solving equations modulo p and applying Hensel’s lemma. In our upcoming classes,
we shall also discuss equations for which these methods are not applicable, and outline several
approaches to them.
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