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An integer a is said to be a quadratic residue modulo p if the congruence x2 ≡ a (mod p) has

solutions. We define the Legendre symbol
(

a
p

)

of a modulo p by the formula

(

a

p

)

=











1, if gcd(a, p) = 1 and a is a quadratic residue modulo p,

−1, if gcd(a, p) = 1 and a is not a quadratic residue modulo p,

0, if a ≡ 0 (mod p).

Exercise. For an odd prime p, the number of solutions to the congruence x2 ≡ a (mod p) is

equal to 1 +
(

a
p

)

.

Proposition 1. Let p be an odd prime. The number of quadratic residues in (Z/pZ)× is equal to
p−1
2 , that is half of nonzero integers modulo p are quadratic residues.

Proof. We know that the multiplicative group modulo p is cyclic, (Z/pZ)× = {1, g, . . . , gp−2} for
some g, which implies that squares in it are precisely those gi with even i (although i is defined
modulo p− 1, since p is odd, the parity of i is well defined). �

The description of quadratic residues in the previous proof implies that the product of two qua-
dratic residues is a quadratic residue, the product of a quadratic residue and a quadratic nonresidue
is a quadratic nonresidue, and the product of two quadratic nonresidues is a quadratic residue. In
other words,

(

ab

p

)

=

(

a

p

)(

b

p

)

.

In fact, this statement can be improved a lot right away. Namely,

Proposition 2 (Euler’s lemma). Let p be an odd prime. We have
(

a

p

)

≡ a
p−1
2 (mod p).

Proof. Let us consider the factorisation xp−1−1 = (x(p−1)/2−1)(x(p−1)/2+1). The roots of the left
hand side are all nonzero elements modulo p, and each quadratic residue is manifestly a root of the
first factor on the right. Since there are p−1

2 quadratic residues, and a polynomial of degree d over
a field has at most d roots, we conclude that the roots of the first factor are precisely all quadratic
residues, and the roots of the second factor are precisely all quadratic nonresidues. �

Exercise. Why is the proposition we just proved an “improvement” of the previous one?

Corollary. Let p be an odd prime. We have
(

−1

p

)

= (−1)
p−1
2 .

Proof. The previous statement guarantees that the two are congruent modulo p. But both numbers
are equal to ±1, so they can be congruent modulo an odd prime if and only if they are equal. �
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Theorem 1 (Quadratic reciprocity law). Let p and q be odd primes. Then
(

p
q

)(

q
p

)

= (−1)
p−1
2

·
q−1
2 .

Proof. The key ingredient in this proof is

Lemma (Zolotarev’s lemma). Let p be an odd prime, and let a be an integer coprime to p. Consider
the permutation σa of 1, 2, . . . , p− 1 defined by multiplying everything by a and reducing modulo p.
Then

(

a

p

)

= sign(σa).

Proof. Note that the sign of a permutation σ of 1, . . . , n can be defined by the property
∏

1≤i<j≤n

(xσ(i) − xσ(j)) = sign(σ)
∏

1≤i<j≤n

(xi − xj).

Let us put n = p, σ = σa, and xi = i for all i = 1, . . . , p. Then we have

sign(σa)
∏

1≤i<j≤p

(i−j) =
∏

1≤i<j≤p

(σa(i)−σa(j)) ≡
∏

1≤i<j≤p

(ai−aj) = a
p(p−1)

2

∏

1≤i<j≤p

(i−j) (mod p).

We conclude that

sign(σa) ≡ a
p(p−1)

2 ≡ (a
(p−1)

2 )p ≡

(

a

p

)p

=

(

a

p

)

(mod p).

But both numbers involved are equal to ±1, so they may be congruent modulo an odd prime if and
only if they are equal. �

To use Zolotarev’s lemma, we shall invoke the Chinese Remainder Theorem. Let us consider the
permutations λ, µ of Z/pZ× Z/qZ defined by the formulas

λ(a, b) = (a, a+ pb),

µ(a, b) = (qa+ b, b).

Clearly, λ permutes elements of the form (a0, b) with the same a0, and it easily follows that sign(λ) =
(

p
q

)p
=

(

p
q

)

. Similarly, sign(µ) =
(

q
p

)q
=

(

q
p

)

.

Let us now consider the permulation ν of Z/(pq)Z obtained as follows: we use the identification
ρ : Z/(pq)Z → Z/pZ×Z/qZ (here we use the Chinese Remainder Theorem), and put ν = ρ−1µλ−1ρ.
In plain words, we have ν(a + pb) = qa + b. Let us compute the sign of this permutation in two

different ways. First, our previous computations show that sign(ν) = sign(µ) sign(λ−1) =
(

p
q

)(

q
p

)

.

Second, we can try to compute this sign directly, counting the number of inversions, that is counting
the number of pairs of pairs ((a, b), (a′, b′)) for which a + pb < a′ + pb′ but qa + b > qa′ + b′, that
is a − a′ < p(b′ − b) and q(a − a′) > b′ − b. This immediately implies that a − a′ > 0 and
b − b′ < 0. (Indeed, combining these inequalities, we get b′ − b < q(a − a′) < pq(b′ − b) and
pq(a − a′) > p(b′ − b) > a − a′). Therefore, the number of sought pairs of pairs is equal to
(

p
2

)(

q
2

)

≡ p−1
2 · q−1

2 (mod 2), and therefore we have sign(ν) = (−1)
p−1
2

·
q−1
2 , which completes the

proof. �

In the next tutorial class, you will show that for an odd prime p, we have
(

2
p

)

= (−1)
p
2
−1
8 . This

statement is often referred to a “supplement to quadratic reciprocity law”, meaning that altogether

this statement, the quadratic reciprocity law itself, and the formula for
(

−1
p

)

that we proved, give
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a very fast way of computing Legendre symbols. For example,
(

23

103

)

= −

(

103

23

)

= −

(

11

23

)

=

(

23

11

)

=

(

1

11

)

= 1,

(

43

101

)

=

(

101

43

)

=

(

15

43

)

=

(

3

43

)(

5

43

)

= −

(

43

3

)(

43

5

)

= −

(

2

3

)(

3

5

)

= −(−1)(−1) = −1,

(

253

257

)

=

(

−4

257

)

=

(

−1

257

)(

2

257

)2

= 1.
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