QUADRATIC RESIDUES
(MA2316, FOURTH WEEK)

VLADIMIR DOTSENKO

An integer a is said to be a quadratic residue modulo p if the congruence 22 = a (mod p) has

solutions. We define the Legendre symbol <%> of a modulo p by the formula

1, if ged(a,p) =1 and a is a quadratic residue modulo p,
a
<—> = ¢ —1, if ged(a,p) =1 and a is not a quadratic residue modulo p,

b 0, ifa=0 (mod p).
Exercise. For an odd prime p, the number of solutions to the congruence x? = a (mod p) is
equal to 1 + <%)

Proposition 1. Let p be an odd prime. The number of quadratic residues in (Z/pZ)* is equal to
p%l, that is half of nonzero integers modulo p are quadratic residues.

Proof. We know that the multiplicative group modulo p is cyclic, (Z/pZ)* = {1,g,...,g"2} for
some g, which implies that squares in it are precisely those ¢* with even ¢ (although ¢ is defined
modulo p — 1, since p is odd, the parity of ¢ is well defined). O

The description of quadratic residues in the previous proof implies that the product of two qua-
dratic residues is a quadratic residue, the product of a quadratic residue and a quadratic nonresidue
is a quadratic nonresidue, and the product of two quadratic nonresidues is a quadratic residue. In
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In fact, this statement can be improved a lot right away. Namely,

Proposition 2 (Euler’s lemma). Let p be an odd prime. We have

<2> S (mod p).
p

Proof. Let us consider the factorisation z?~1 —1 = (x®=1/2 —1)(z(P=1/2 1 1). The roots of the left
hand side are all nonzero elements modulo p, and each quadratic residue is manifestly a root of the
first factor on the right. Since there are p_§1 quadratic residues, and a polynomial of degree d over
a field has at most d roots, we conclude that the roots of the first factor are precisely all quadratic
residues, and the roots of the second factor are precisely all quadratic nonresidues. ]

Exercise. Why is the proposition we just proved an “improvement” of the previous one?

Corollary. Let p be an odd prime. We have

()=

Proof. The previous statement guarantees that the two are congruent modulo p. But both numbers
are equal to £1, so they can be congruent modulo an odd prime if and only if they are equal. [
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Theorem 1 (Quadratic reciprocity law). Let p and q be odd primes. Then (g) <%> =(-1)

Proof. The key ingredient in this proof is

Lemma (Zolotarev’s lemma). Let p be an odd prime, and let a be an integer coprime to p. Consider
the permutation o, of 1,2,...,p— 1 defined by multiplying everything by a and reducing modulo p.

Then
a .
— | = sign(oy,).
(5) =t

Proof. Note that the sign of a permutation ¢ of 1,...,n can be defined by the property

H (aco(l-) - To(j)) = sign(o) H (i — ;).

1<i<j<n 1<i<j<n

Let usputn=p, 0 =0,, and z; =7 for all: =1,...,p. Then we have

sign(oa) [] G-0= [ CGad=ca= ] (ai-aj)=a*5> [ (i—j) (modp).
1<i<j<p 1<i<j<p 1<i<j<p 1<i<j<p

We conclude that

senon) =" = @ = () = (2) od )

But both numbers involved are equal to 1, so they may be congruent modulo an odd prime if and
only if they are equal. O

To use Zolotarev’s lemma, we shall invoke the Chinese Remainder Theorem. Let us consider the
permutations A, p of Z/pZ x 7./qZ defined by the formulas

Aa, b) = (a,a + pb),
w(a,b) = (qa + b, b).

Clearly, A permutes elements of the form (ag, b) with the same ag, and it easily follows that sign(\) =

P q
<§> = (g). Similarly, sign(u) = (%) = <%>.
Let us now consider the permulation v of Z/(pq)Z obtained as follows: we use the identification
p: Z/(pq)Z — 7./]pZx 7/ q7Z (here we use the Chinese Remainder Theorem), and put v = p~tuA~!p.
In plain words, we have v(a 4+ pb) = qa + b. Let us compute the sign of this permutation in two

different ways. First, our previous computations show that sign(v) = sign(u) sign(A~1) = <§) (%).
Second, we can try to compute this sign directly, counting the number of inversions, that is counting
the number of pairs of pairs ((a,b), (a’,b")) for which a + pb < a’ 4+ pb/ but qa + b > ga’ + V', that
isa—d < pl —0b) and g(a —a’) > b —b. This immediately implies that a — a’ > 0 and
b—1b < 0. (Indeed, combining these inequalities, we get b/ — b < ¢(a — d’) < pq(b — b) and
pgla —a') > p(t/ —b) > a — a'). Therefore, the number of sought pairs of pairs is equal to

A () = p%l . qz;l (mod 2), and therefore we have sign(v) = (—1)%'%, which completes the
proof. O

2_
In the next tutorial class, you will show that for an odd prime p, we have (%) = (—1)p . This

statement is often referred to a “supplement to quadratic reciprocity law”, meaning that altogether
this statement, the quadratic reciprocity law itself, and the formula for <%) that we proved, give
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a very fast way of computing Legendre symbols. For example,
(i) =~ () == () = (1) = (i) -
103 23 23 11 11 ’
43 101 15 3 5 43 43 2 3
(o) = () = (5) = (5) (&) =~ (5) (5) =~ (5) (5) - =1
() (7)) ()
257 257 257 257



