MA2317: Introduction to Number Theory Homework problems due October 29, 2010

The last two questions are optional. Other questions are assessed.

1. Solve the system of congruences

$$
\begin{aligned}
& x \equiv 11 \quad(\bmod 23), \\
& x \equiv 12 \quad(\bmod 25), \\
& x \equiv 13 \quad(\bmod 27)
\end{aligned}
$$

2. For which a does the following system of congruences have integer solutions?

$$
\begin{array}{ll}
x \equiv a & (\bmod 100), \\
x \equiv b & (\bmod 35) .
\end{array}
$$

3. Compute the following Legendre symbols:
(a) $\left(\frac{1192}{1291}\right)$;
(b) $\left(\frac{499}{1291}\right)$;
(c) $\left(\frac{2357}{3571}\right)$.
4. Which of the following congruences have solutions?
(a) $x^{2}-12 x+31 \equiv 0(\bmod 47)$;
(b) $x^{2}+3 x-31 \equiv 0(\bmod 101)$;
(c) $x^{2}-12 x+31 \equiv 0(\bmod 235)$?
5. (a) Show that for an odd prime p we have $\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)$.
(b) Use the previous result to prove that for every n all prime divisors of $9 n^{2}+3 n+1$ are of the form $3 k+1$, and adapt the " $p_{1} p_{2} \cdots p_{n}-1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form $3 k+1$.
6. Show that there are infinitely many prime numbers q such that $2 q+1$ is not a prime. (Hint: Fermat's Little Theorem might be helpful at some point.)
7. Let p be an odd prime number.
(a) Show that the function $k \mapsto \frac{1-k}{1+k}$ maps the set $\mathbb{Z} / \mathrm{p} \mathbb{Z} \backslash\{-1\}$ to itself and is a 1-to-1 correspondence.
(b) Show that

$$
\sum_{k=0}^{p-1}\left(\frac{k}{p}\right)=0
$$

(c) Find the number of solutions to the equation $x^{2}+y^{2}=1$ in $\mathbb{Z} / p \mathbb{Z}$. (Hint: this number is equal to $\sum_{y=0}^{p-1}\left(1+\left(\frac{1-y^{2}}{p}\right)\right.$).)

