MA2317: Introduction to Number Theory

Homework problems due November 19, 2010
The last two questions are optional. Other questions are assessed.

1. Among 18 maths students, 7 took the number theory course, 10 took the algebraic geometry course, and 10 took quantum mechanics. Also, 3 students took number theory and algebraic geometry, 4 took number theory and quantum mechanics, and 5 - algebraic geometry and quantum mechanics. Finally, one of the students took all three courses. How many students did not take any of the three courses?
2. How many permutations σ of $1,2, \ldots, n$ move any number from its place (that is, $\sigma(\mathfrak{i}) \neq \mathfrak{i}$ for all \mathfrak{i})? (Hint: let \mathcal{U}_{k} be the set of all permutations σ with $\sigma(\mathrm{k})=\mathrm{k}$ [and no other restrictions]; apply the inclusion-exclusion formula to these sets.)
3. Describe all integers n such that (a) $\varphi(n)=6 ;(b) \varphi(\varphi(n))=6$; (c) $\varphi(n)=2 n / 3$.
4. (a) Compute
$r(x)=\operatorname{gcd}\left(x^{5}-4 x^{4}-11 x^{3}+45 x^{2}-46 x+55, x^{6}-7 x^{5}+12 x^{4}-9 x^{3}+22 x^{2}-x-33\right)$.
(b) Find some polynomials $p(x)$ and $q(x)$ such that $r(x)$ is equal to the combination
$p(x)\left(x^{5}-4 x^{4}-11 x^{3}+45 x^{2}-46 x+55\right)+q(x)\left(x^{6}-7 x^{5}+12 x^{4}-9 x^{3}+22 x^{2}-x-33\right)$.
5. Describe all polynomials $\mathfrak{p}(x)$ such that $p(3)=-7$ and the remainder of $p(x)$ modulo $x^{2}-x-1$ is equal to $3 x+2$.
6. Show that the polynomial $x^{4}-8 x^{3}+12 x^{2}-6 x-42$ is irreducible over integers.
7. Show that the polynomial $x^{105}-9$ is irreducible over integers.
8. Assume that two polynomials $f(x)$ and $g(x)$ with integer coefficients have no common divisors of positive degree. Show that if we consider them over $\mathbb{Z} / \mathrm{p} \mathbb{Z}$, it is possible that they are not relatively prime anymore, but that they remain relatively prime over $\mathbb{Z} / \mathrm{p} \mathbb{Z}$ for infinitely many primes p.
9. Let $f(x)$ be a polynomial of positive degree with integer coefficients. Show that the congruence $f(x) \equiv 0(\bmod p)$ has solutions for infinitely many prime numbers p.
10. Let a_{1}, \ldots, a_{n} be distinct integers. Show that the polynomial $f(x)=\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)^{2} \cdots\left(x-a_{n}\right)^{2}+1$ is irreducible over integers. (Hint: for real $x, f(x)$ only assumes positive values, so if $g \mid f$, then g assumes either only positive values or only negative values.)
