The last two questions are optional. Other questions are assessed.

1. Show that $\sqrt{2}+\sqrt{3}+\sqrt{5}$ is an algebraic number.
2. Show that the number $\sum_{k \geqslant 0} \frac{2^{2^{n}}}{3^{n \pi}}$ is transcendental.
3. Show that $e=\sum_{n \geqslant 0} \frac{1}{n!}$ is not an algebraic number of degree 2 , that is $\mathrm{a} e^{2}+\mathrm{be}+\mathrm{c}=0$ with $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ implies $\mathrm{a}=\mathrm{b}=\mathrm{c}=0$. (Hint: this can be rewritten as $a e+b+c e^{-1}=0$, where $e^{-1}=\sum_{n \geqslant 0} \frac{(-1)^{n}}{n!}$.)
4. Consider the segment connecting the points $(0,3)$ and $(2 n, 0)$ in the plane. Explain what conditions should be satisfied by coefficients of a polynomial $f(x)$ in order for that segment to be the Newton diagram of that polynomial relative to the given prime p, and use these conditions to formulate a new criterion of irreducibility.
5. Find a rational parametrisation of the curve $y^{2}+3 x^{2}-2 x+y-1=0$.
6. Using the Mason-Stothers theorem, show that the equation

$$
f(x)^{n}+g(x)^{m}+h(x)^{k}=0
$$

for $2 \leqslant n \leqslant m \leqslant k$ may have non-constant relatively prime solutions $f(x), g(x), h(x) \in \mathbb{C}[x]$ only for the following values of $(n, m, k):(2,2, k)$ (where $k \geqslant 2$), $(2,3,3),(2,3,4),(2,3,5)$.
7. Show that if for two (non necessarily relatively prime) polynomials $f(x)$ and $g(x)$ we have $h(x)=f(x)^{3}-g(x)^{2} \neq 0$, then $\operatorname{deg} f \leqslant 2 \operatorname{deg} h-2$, $\operatorname{deg} g \leqslant 3 \operatorname{deg} h-3$.

