MA2317: Introduction to Number Theory Homework problems due December 16, 2010

Note the unusual deadline: this assignment is due on Thursday, December 16!

The last three questions are optional. Other questions are assessed.

1. Solve the congruence (a) $x^2 \equiv -3 \pmod{13}$; (b) $x^2 \equiv -3 \pmod{169}$; (c) $x^2 \equiv -3 \pmod{2197}$.

2. Compute the p-adic expansions of (a) $\frac{1}{10}$ in \mathbb{Z}_{11} ; (b) $-\frac{9}{16}$ in \mathbb{Z}_{13} . **3.** Compute the p-adic expansions of (a) $\frac{1}{24}$ in \mathbb{Q}_2 ; (b) $\frac{1}{120}$ in \mathbb{Q}_5 . **4.** Show that for every p the polynomial $(x^3 - 37)(x^2 + 3)$ has roots in \mathbb{Z}_p . (*Hint*: if $p \not\equiv 1 \pmod{3}$, the mapping $x \mapsto x^3$ of the group of nonzero remainders modulo p to itself is injective, so every element has to be a cube.)

5. Show that for every p the equation $x^2 + 2y^4 - 17z^4 = 0$ has nonzero solutions in \mathbb{Z}_{p} .

6. Show that as n tends to infinity, the rational number

$$a_n = 2 + \frac{2^2}{2} + \frac{2^3}{3} + \ldots + \frac{2^n}{n}$$

tends to zero in 2-adic metric. In other words, if we write $a_n = 2^{c_n} \frac{p_n}{q_n}$ with odd p_n and q_n , then c_n tends to infinity as n tends to infinity.

7. Is the following proof of irrationality of π correct and rigorous? Why?

Assume that $\pi = \frac{a}{b}$, and let $p \neq 2$ be a prime number not dividing a. Then

$$0 = \sin(pb\pi) = \sin(pa) = \sum_{n \ge 0} \frac{(-1)^n (pa)^{2n+1}}{(2n+1)!} \equiv pa \pmod{p^2},$$

and we have a contradiction.