Note the unusual deadline: this assignment is due on Thursday, December 16 !

The last three questions are optional. Other questions are assessed.

1. Solve the congruence $(\mathbf{a}) x^{2} \equiv-3(\bmod 13) ;(\mathbf{b}) x^{2} \equiv-3(\bmod 169) ;$ (c) $x^{2} \equiv-3(\bmod 2197)$.
2. Compute the p-adic expansions of (a) $\frac{1}{10}$ in $\mathbb{Z}_{11} ;(\mathbf{b})-\frac{9}{16}$ in \mathbb{Z}_{13}.
3. Compute the \mathfrak{p}-adic expansions of (a) $\frac{1}{24}$ in $\mathbb{Q}_{2} ;\left(\right.$ b) $\frac{1}{120}$ in \mathbb{Q}_{5}.
4. Show that for every p the polynomial $\left(x^{3}-37\right)\left(x^{2}+3\right)$ has roots in \mathbb{Z}_{p}. (Hint: if $p \not \equiv 1(\bmod 3)$, the mapping $x \mapsto x^{3}$ of the group of nonzero remainders modulo p to itself is injective, so every element has to be a cube.)
5. Show that for every p the equation $x^{2}+2 y^{4}-17 z^{4}=0$ has nonzero solutions in \mathbb{Z}_{p}.
6. Show that as n tends to infinity, the rational number

$$
a_{n}=2+\frac{2^{2}}{2}+\frac{2^{3}}{3}+\ldots+\frac{2^{n}}{n}
$$

tends to zero in 2-adic metric. In other words, if we write $a_{n}=2^{c_{n}} \frac{p_{n}}{q_{n}}$ with odd p_{n} and q_{n}, then c_{n} tends to infinity as n tends to infinity.
7. Is the following proof of irrationality of π correct and rigorous? Why?

Assume that $\pi=\frac{\mathrm{a}}{\mathrm{b}}$, and let $\mathrm{p} \neq 2$ be a prime number not dividing a. Then

$$
0=\sin (p b \pi)=\sin (p a)=\sum_{n \geqslant 0} \frac{(-1)^{n}(p a)^{2 n+1}}{(2 n+1)!} \equiv p a \quad\left(\bmod p^{2}\right)
$$

and we have a contradiction.

