Number theory: solutions to the sample exam paper 2010/11

1. Clearly, every integer n admits a unique representation of the form n = k[, where [ is
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2 Tl pzly

I square free, Ek2<N n<N
I<KN

Since the latter sum tends to infinity as N tends to infinity, and
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tends to infinity as N tends to infinity. Also, this sum is clearly equal to
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so if there were only a finite number of primes, the sum would have to be finite too.
2. We have r(z) = f(z) — (32 — 1)g(z) = La® — 22 — 42 — 2, s0
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ro(x) = r(x) + %(Zx + Z)m(m) =0.
This means that %rl (x) is the greatest common divisor. We have
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3.(a) Let the decimal digits of n be ag, a; etc., so that n = ag + 10a; + 100as + . . ..
We have

n = ag+ 10a; + 100as + ... = (ag + a1 + ag + ...) + (9a; + 99ay + 999a3 + .. .),

which instantly proves the statement we want to prove.

(b) In class, we proved that for the Euler function ¢ we have ¢(ab) = ¢(a)p(b)
whenever a and b are coprime. Therefore, we have ¢(90) = p(5)p(9)p(2) =4-6-1 = 24.
By Euler’s theorem, we have a** = 1 (mod 90) whenever ged(a,90) = 1. This can be
rewritten as a®* = a~! (mod 90).



(c) By (a),

n* = 999356547346805156075552524294177648535563 =
=9+ 9+9+3+5+6+5+4+7+3+4+6+8+0+5+1+5+6+0+
+T7T+5+5+54+24+54+24+44+24+9+4+1+7+7+6+4+8+5+3+5+5+6+3 =
=205=7 (mod9).

This means that n is coprime with 9; also, the remainder modulo 10 is the last decimal
digit of a number, so n** = 3 (mod 10), which immediately shows that n is coprime
with 10 Therefore, n is coprime with 90, so by (b), n** = n™! (mod 90). This means
that n?3 = n~! (mod 9) and n?* = n~! (mod 10). Summing up the above, we have the
system of congruences

n'=7 (mod9),

n~1 =3 (mod 10),
Since 10x —9y = 1 for x = y = 1, the Chinese remainder theorem implies that this system
is equivalent to a single congruence n=* =10-7—9 -3 =43 (mod 90).

Let us compute 43! modulo 90. The Euclidean algorithm for 43 and 90 proceeds as

00 = 243 + 4,
43=10-4+3,
=341,
3=3.1+0,
SO
4=90—2-43,

3=43—-10(90 —2-43) =21-43 —10- 90,
1=11-90— 2343,

son =431 = (—23) = 67 (mod 90). We conclude that n = 67, otherwise n would be
greater than 100, and n** would have at least 46 decimal digits, which is not the case.

4. If for some integer n and an odd prime p we have 16n* —2 = 0 (mod p), we observe
that (4n)? = 2 (mod p), so (%) = 1, and from class we know that it implies p = *+1
(mod 8). Also, since 16n% —2 = 2(8n? —1), we conclude that not all of odd prime divisors
of 16n? —2 are congruent to 1 modulo 8, so there is at least one congruent to —1 modulo 8.
From here, the proof proceeds as usual: if there are only finitely many primes of that

form, put n equal to their product, and arrive to a contradiction.
5. If that inequality is satisfied, we have
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because |2n? —m?| > 1 (it is a nonzero integer), so
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which means n < 4, so n = 1,2, 3, and clearly for each of these n there are only finitely
many m that would work. For those n we have the inequalities |[v/2—m| < 1, [v/2— Bl < %,
and |v/2 — 7 < % respectively, which gives the solutions n = 1,m =1; n =1, m = 2;
n =2 m = 3. (For n =3 it is easy to that m = 4 and m = 5 do not work, and hence
other choices of m would not work either.)

6. The case of odd p is obvious: there are two solutions +1, and if there is a solution
for (x —1)(z +1) =22 — 1 =0 (mod p*) different from +1, we observe that both z — 1
and x + 1 are divisible by p, so 2 = (z+1) — (x — 1) is divisible by p, a contradiction. For
powers of two, the reasoning is as follows. Clearly, = 2y + 1 for some ¥, because 2% = 1
(mod 2%) and is therefore odd. We have 22 = 4y?> +4y+1 =1 (mod 2%), so 4y?> +4y =0
(mod 2%). For k = 1,2 this is satisfied for any choice of y, so any odd z modulo 2% would
do, which explains the answer. For k£ > 3, that congruence is equivalent to y(y + 1) =0
(mod 2%72), which clearly means y = 0 (mod 272) or y = —1 (mod 2¥7%). Finally,
we have to pick those y which give different solutions for  modulo 2¥, which are y = 0,
y=—1,y=282 9y =2F2_1 — altogether 4 solutions. Given that 43120 = 2*.5-72-11,
and using the Chinese remainder theorem (choosing a solution modulo each prime power
determines the solution uniquely), we instantly conclude that the number of solutions of
22 =1 (mod 43120) is4-2-2-2 = 32.
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