
Number theory: solutions to the sample exam paper 2010/11

1. Clearly, every integer n admits a unique representation of the form n = k2l, where l is
square free. Thus, ∑

l square free,
l≤N

1

l

∑
k2≤N

1

k2
≥
∑
n≤N

1

n
.

Since the latter sum tends to infinity as N tends to infinity, and∑
k2≤N

1

k2
≤
∑
k≥1

1

k2
≤ 1 +

∑
k≥1

1

k(k − 1)
= 1 +

∑
k≥1

(
1

(k − 1)
− 1

k
) = 2,

we deduce that ∑
l square free,

l≤N

1

l

tends to infinity as N tends to infinity. Also, this sum is clearly equal to∏
p prime

(1 +
1

p
),

so if there were only a finite number of primes, the sum would have to be finite too.
2. We have r(x) = f(x)− (1

2
x− 1

4
)g(x) = 11

4
x3 − 3

2
x2 − 4x− 5

4
, so

r1(x) = g(x)− (
8

11
x +

4

121
)r(x) = −368

121
(x2 − x− 1),

and

r2(x) = r(x) +
121

368
(
11

4
x +

5

4
)r1(x) = 0.

This means that 121
368

r1(x) is the greatest common divisor. We have

121

368
r1(x) =

121

368
(g(x)− (

8

11
x +

4

121
)(f(x)− (

1

2
x− 1

4
)g(x))) =

= −(
11

46
x +

1

92
)f(x) + (

11

92
x2 − 5

92
x +

15

46
)g(x).

3.(a) Let the decimal digits of n be a0, a1 etc., so that n = a0 + 10a1 + 100a2 + . . ..
We have

n = a0 + 10a1 + 100a2 + . . . = (a0 + a1 + a2 + . . .) + (9a1 + 99a2 + 999a3 + . . .),

which instantly proves the statement we want to prove.
(b) In class, we proved that for the Euler function ϕ we have ϕ(ab) = ϕ(a)ϕ(b)

whenever a and b are coprime. Therefore, we have ϕ(90) = ϕ(5)ϕ(9)ϕ(2) = 4 · 6 · 1 = 24.
By Euler’s theorem, we have a24 ≡ 1 (mod 90) whenever gcd(a, 90) = 1. This can be
rewritten as a23 ≡ a−1 (mod 90).
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(c) By (a),

n23 ≡ 999356547346805156075552524294177648535563 ≡
≡ 9 + 9 + 9 + 3 + 5 + 6 + 5 + 4 + 7 + 3 + 4 + 6 + 8 + 0 + 5 + 1 + 5 + 6 + 0+

+ 7 + 5 + 5 + 5 + 2 + 5 + 2 + 4 + 2 + 9 + 4 + 1 + 7 + 7 + 6 + 4 + 8 + 5 + 3 + 5 + 5 + 6 + 3 ≡
≡ 205 ≡ 7 (mod 9).

This means that n is coprime with 9; also, the remainder modulo 10 is the last decimal
digit of a number, so n23 ≡ 3 (mod 10), which immediately shows that n is coprime
with 10 Therefore, n is coprime with 90, so by (b), n23 ≡ n−1 (mod 90). This means
that n23 ≡ n−1 (mod 9) and n23 ≡ n−1 (mod 10). Summing up the above, we have the
system of congruences {

n−1 ≡ 7 (mod 9),

n−1 ≡ 3 (mod 10),

Since 10x−9y = 1 for x = y = 1, the Chinese remainder theorem implies that this system
is equivalent to a single congruence n−1 ≡ 10 · 7− 9 · 3 = 43 (mod 90).

Let us compute 43−1 modulo 90. The Euclidean algorithm for 43 and 90 proceeds as

90 = 2 · 43 + 4,

43 = 10 · 4 + 3,

4 = 3 + 1,

3 = 3 · 1 + 0,

so

4 = 90− 2 · 43,

3 = 43− 10(90− 2 · 43) = 21 · 43− 10 · 90,

1 = 11 · 90− 23 · 43,

so n ≡ 43−1 ≡ (−23) ≡ 67 (mod 90). We conclude that n = 67, otherwise n would be
greater than 100, and n23 would have at least 46 decimal digits, which is not the case.

4. If for some integer n and an odd prime p we have 16n2−2 ≡ 0 (mod p), we observe

that (4n)2 ≡ 2 (mod p), so
(

2
p

)
= 1, and from class we know that it implies p ≡ ±1

(mod 8). Also, since 16n2−2 = 2(8n2−1), we conclude that not all of odd prime divisors
of 16n2−2 are congruent to 1 modulo 8, so there is at least one congruent to −1 modulo 8.
From here, the proof proceeds as usual: if there are only finitely many primes of that
form, put n equal to their product, and arrive to a contradiction.

5. If that inequality is satisfied, we have

1

n3
>
∣∣∣√2− m

n

∣∣∣ = =

∣∣∣∣∣ 2− m2

n2√
2 + m

n

∣∣∣∣∣ =

∣∣∣∣∣ 1

n2

2n2 −m2

√
2 + m

n

∣∣∣∣∣ ≥
∣∣∣∣∣ 1√

2 + m
n

∣∣∣∣∣ 1

n2

because |2n2 −m2| ≥ 1 (it is a nonzero integer), so

1

n3
>

∣∣∣∣∣ 1√
2 + m

n

∣∣∣∣∣ 1

n2
,
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which implies

|
√

2 +
m

n
| > n,

so

3 + 1 > 2
√

2 +
1

n3
> 2
√

2 +
∣∣∣−√2 +

m

n

∣∣∣ ≥ ∣∣∣2√2−
√

2 +
m

n

∣∣∣ =
∣∣∣√2 +

m

n

∣∣∣ > n,

which means n < 4, so n = 1, 2, 3, and clearly for each of these n there are only finitely
many m that would work. For those n we have the inequalities |

√
2−m| < 1, |

√
2−m

2
| < 1

8
,

and |
√

2 − m
3
| < 1

27
respectively, which gives the solutions n = 1,m = 1; n = 1, m = 2;

n = 2, m = 3. (For n = 3 it is easy to that m = 4 and m = 5 do not work, and hence
other choices of m would not work either.)

6. The case of odd p is obvious: there are two solutions ±1, and if there is a solution
for (x− 1)(x + 1) = x2 − 1 ≡ 0 (mod pk) different from ±1, we observe that both x− 1
and x+ 1 are divisible by p, so 2 = (x+ 1)− (x− 1) is divisible by p, a contradiction. For
powers of two, the reasoning is as follows. Clearly, x = 2y + 1 for some y, because x2 ≡ 1
(mod 2k) and is therefore odd. We have x2 = 4y2 + 4y + 1 ≡ 1 (mod 2k), so 4y2 + 4y ≡ 0
(mod 2k). For k = 1, 2 this is satisfied for any choice of y, so any odd x modulo 2k would
do, which explains the answer. For k ≥ 3, that congruence is equivalent to y(y + 1) ≡ 0
(mod 2k−2), which clearly means y ≡ 0 (mod 2k−2) or y ≡ −1 (mod 2k−2). Finally,
we have to pick those y which give different solutions for x modulo 2k, which are y = 0,
y = −1, y = 2k−2, y = 2k−2−1, — altogether 4 solutions. Given that 43120 = 24 ·5·72 ·11,
and using the Chinese remainder theorem (choosing a solution modulo each prime power
determines the solution uniquely), we instantly conclude that the number of solutions of
x2 ≡ 1 (mod 43120) is 4 · 2 · 2 · 2 = 32.
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