Number theory: solutions to the sample exam paper 2010/11

1. Clearly, every integer n admits a unique representation of the form $n=k^{2} l$, where l is square free. Thus,

$$
\sum_{\substack{\text { square free, } \\ l \leq N}} \frac{1}{l} \sum_{k^{2} \leq N} \frac{1}{k^{2}} \geq \sum_{n \leq N} \frac{1}{n} .
$$

Since the latter sum tends to infinity as N tends to infinity, and

$$
\sum_{k^{2} \leq N} \frac{1}{k^{2}} \leq \sum_{k \geq 1} \frac{1}{k^{2}} \leq 1+\sum_{k \geq 1} \frac{1}{k(k-1)}=1+\sum_{k \geq 1}\left(\frac{1}{(k-1)}-\frac{1}{k}\right)=2,
$$

we deduce that

$$
\sum_{\substack{l \text { square free } \\ l \leq N}} \frac{1}{l}
$$

tends to infinity as N tends to infinity. Also, this sum is clearly equal to

$$
\prod_{p \text { prime }}\left(1+\frac{1}{p}\right),
$$

so if there were only a finite number of primes, the sum would have to be finite too.
2 . We have $r(x)=f(x)-\left(\frac{1}{2} x-\frac{1}{4}\right) g(x)=\frac{11}{4} x^{3}-\frac{3}{2} x^{2}-4 x-\frac{5}{4}$, so

$$
r_{1}(x)=g(x)-\left(\frac{8}{11} x+\frac{4}{121}\right) r(x)=-\frac{368}{121}\left(x^{2}-x-1\right),
$$

and

$$
r_{2}(x)=r(x)+\frac{121}{368}\left(\frac{11}{4} x+\frac{5}{4}\right) r_{1}(x)=0 .
$$

This means that $\frac{121}{368} r_{1}(x)$ is the greatest common divisor. We have

$$
\begin{aligned}
\frac{121}{368} r_{1}(x)=\frac{121}{368}\left(g(x)-\left(\frac{8}{11} x+\frac{4}{121}\right)\right. & \left.\left(f(x)-\left(\frac{1}{2} x-\frac{1}{4}\right) g(x)\right)\right)= \\
& =-\left(\frac{11}{46} x+\frac{1}{92}\right) f(x)+\left(\frac{11}{92} x^{2}-\frac{5}{92} x+\frac{15}{46}\right) g(x) .
\end{aligned}
$$

3.(a) Let the decimal digits of n be a_{0}, a_{1} etc., so that $n=a_{0}+10 a_{1}+100 a_{2}+\ldots$. We have

$$
n=a_{0}+10 a_{1}+100 a_{2}+\ldots=\left(a_{0}+a_{1}+a_{2}+\ldots\right)+\left(9 a_{1}+99 a_{2}+999 a_{3}+\ldots\right),
$$

which instantly proves the statement we want to prove.
(b) In class, we proved that for the Euler function φ we have $\varphi(a b)=\varphi(a) \varphi(b)$ whenever a and b are coprime. Therefore, we have $\varphi(90)=\varphi(5) \varphi(9) \varphi(2)=4 \cdot 6 \cdot 1=24$. By Euler's theorem, we have $a^{24} \equiv 1(\bmod 90)$ whenever $\operatorname{gcd}(a, 90)=1$. This can be rewritten as $a^{23} \equiv a^{-1}(\bmod 90)$.
(c) By (a),

$$
\begin{aligned}
& n^{23} \equiv 999356547346805156075552524294177648535563 \equiv \\
& \equiv 9+9+9+3+5+6+5+4+7+3+4+6+8+0+5+1+5+6+0+ \\
& +7+5+5+5+2+5+2+4+2+9+4+1+7+7+6+4+8+5+3+5+5+6+3 \equiv \\
& \equiv 205 \equiv 7 \quad(\bmod 9) .
\end{aligned}
$$

This means that n is coprime with 9 ; also, the remainder modulo 10 is the last decimal digit of a number, so $n^{23} \equiv 3(\bmod 10)$, which immediately shows that n is coprime with 10 Therefore, n is coprime with 90 , so by (b), $n^{23} \equiv n^{-1}(\bmod 90)$. This means that $n^{23} \equiv n^{-1}(\bmod 9)$ and $n^{23} \equiv n^{-1}(\bmod 10)$. Summing up the above, we have the system of congruences

$$
\left\{\begin{array}{l}
n^{-1} \equiv 7 \quad(\bmod 9) \\
n^{-1} \equiv 3 \quad(\bmod 10)
\end{array}\right.
$$

Since $10 x-9 y=1$ for $x=y=1$, the Chinese remainder theorem implies that this system is equivalent to a single congruence $n^{-1} \equiv 10 \cdot 7-9 \cdot 3=43(\bmod 90)$.

Let us compute 43^{-1} modulo 90. The Euclidean algorithm for 43 and 90 proceeds as

$$
\begin{gathered}
90=2 \cdot 43+4, \\
43=10 \cdot 4+3, \\
4=3+1, \\
3=3 \cdot 1+0,
\end{gathered}
$$

so

$$
\begin{gathered}
4=90-2 \cdot 43 \\
3=43-10(90-2 \cdot 43)=21 \cdot 43-10 \cdot 90 \\
1=11 \cdot 90-23 \cdot 43
\end{gathered}
$$

so $n \equiv 43^{-1} \equiv(-23) \equiv 67(\bmod 90)$. We conclude that $n=67$, otherwise n would be greater than 100, and n^{23} would have at least 46 decimal digits, which is not the case.
4. If for some integer n and an odd prime p we have $16 n^{2}-2 \equiv 0(\bmod p)$, we observe that $(4 n)^{2} \equiv 2(\bmod p)$, so $\left(\frac{2}{p}\right)=1$, and from class we know that it implies $p \equiv \pm 1$ $(\bmod 8)$. Also, since $16 n^{2}-2=2\left(8 n^{2}-1\right)$, we conclude that not all of odd prime divisors of $16 n^{2}-2$ are congruent to 1 modulo 8 , so there is at least one congruent to -1 modulo 8 . From here, the proof proceeds as usual: if there are only finitely many primes of that form, put n equal to their product, and arrive to a contradiction.
5. If that inequality is satisfied, we have

$$
\frac{1}{n^{3}}>\left|\sqrt{2}-\frac{m}{n}\right|==\left|\frac{2-\frac{m^{2}}{n^{2}}}{\sqrt{2}+\frac{m}{n}}\right|=\left|\frac{1}{n^{2}} \frac{2 n^{2}-m^{2}}{\sqrt{2}+\frac{m}{n}}\right| \geq\left|\frac{1}{\sqrt{2}+\frac{m}{n}}\right| \frac{1}{n^{2}}
$$

because $\left|2 n^{2}-m^{2}\right| \geq 1$ (it is a nonzero integer), so

$$
\frac{1}{n^{3}}>\left|\frac{1}{\sqrt{2}+\frac{m}{n}}\right| \frac{1}{n^{2}},
$$

which implies

$$
\left|\sqrt{2}+\frac{m}{n}\right|>n,
$$

so

$$
3+1>2 \sqrt{2}+\frac{1}{n^{3}}>2 \sqrt{2}+\left|-\sqrt{2}+\frac{m}{n}\right| \geq\left|2 \sqrt{2}-\sqrt{2}+\frac{m}{n}\right|=\left|\sqrt{2}+\frac{m}{n}\right|>n
$$

which means $n<4$, so $n=1,2,3$, and clearly for each of these n there are only finitely many m that would work. For those n we have the inequalities $|\sqrt{2}-m|<1,\left|\sqrt{2}-\frac{m}{2}\right|<\frac{1}{8}$, and $\left|\sqrt{2}-\frac{m}{3}\right|<\frac{1}{27}$ respectively, which gives the solutions $n=1, m=1 ; n=1, m=2$; $n=2, m=3$. (For $n=3$ it is easy to that $m=4$ and $m=5$ do not work, and hence other choices of m would not work either.)
6. The case of odd p is obvious: there are two solutions ± 1, and if there is a solution for $(x-1)(x+1)=x^{2}-1 \equiv 0\left(\bmod p^{k}\right)$ different from ± 1, we observe that both $x-1$ and $x+1$ are divisible by p, so $2=(x+1)-(x-1)$ is divisible by p, a contradiction. For powers of two, the reasoning is as follows. Clearly, $x=2 y+1$ for some y, because $x^{2} \equiv 1$ $\left(\bmod 2^{k}\right)$ and is therefore odd. We have $x^{2}=4 y^{2}+4 y+1 \equiv 1\left(\bmod 2^{k}\right)$, so $4 y^{2}+4 y \equiv 0$ $\left(\bmod 2^{k}\right)$. For $k=1,2$ this is satisfied for any choice of y, so any odd x modulo 2^{k} would do, which explains the answer. For $k \geq 3$, that congruence is equivalent to $y(y+1) \equiv 0$ $\left(\bmod 2^{k-2}\right)$, which clearly means $y \equiv 0\left(\bmod 2^{k-2}\right)$ or $y \equiv-1\left(\bmod 2^{k-2}\right)$. Finally, we have to pick those y which give different solutions for x modulo 2^{k}, which are $y=0$, $y=-1, y=2^{k-2}, y=2^{k-2}-1$, — altogether 4 solutions. Given that $43120=2^{4} \cdot 5 \cdot 7^{2} \cdot 11$, and using the Chinese remainder theorem (choosing a solution modulo each prime power determines the solution uniquely), we instantly conclude that the number of solutions of $x^{2} \equiv 1(\bmod 43120)$ is $4 \cdot 2 \cdot 2 \cdot 2=32$.

