MA2317: Introduction to Number Theory Tutorial problems, October 8, 2010

1. (a) Compute gcd(2317, 12095).

(b) Find some integers \mathbf{x} and \mathbf{y} such that

 $2317x + 12095y = \gcd(2317, 12095).$

(c) Describe all pairs (x, y) satisfying the condition of the previous question.

2. (a) Show that for integers a, k, n we have $(a^n - 1) | (a^{kn} - 1)$.

(b) Observing that $2^{kb+r} - 1 = 2^r(2^{kb} - 1) + 2^r - 1$, show that

 $gcd(2^{a}-1, 2^{b}-1) = 2^{gcd(a,b)}-1.$

3. (a) Let z = a + bi be a complex number with integer components a and b (a *Gaussian integer*). Describe geometrically the set of all multiples of z, that is the set of numbers zz', where z' is also a Gaussian integer.

(b) Using the previous question (or rounding z/w to the closest Gaussian integer), explain how to divide Gaussian integers with remainder: show that for every two Gaussian integers z and w there exists Gaussian integers q and r such that z = wq + r and $0 \leq |r| < |w|$.

4. Modify the " $p_1p_2 \cdots p_n - 1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form 3k-1 (*Hint*: study prime divisors of $3p_1p_2 \cdots p_n - 1$, bearing in mind that every prime $p \neq 3$ is either 3k + 1 or 3k - 1 for some k).