MA2317: Introduction to Number Theory
 Tutorial problems, October 8, 2010

1. (a) Compute $\operatorname{gcd}(2317,12095)$.
(b) Find some integers x and y such that

$$
2317 x+12095 y=\operatorname{gcd}(2317,12095)
$$

(c) Describe all pairs (x, y) satisfying the condition of the previous question.
2. (a) Show that for integers a, k, n we have $\left(a^{n}-1\right) \mid\left(a^{k n}-1\right)$.
(b) Observing that $2^{\mathrm{kb}+\mathrm{r}}-1=2^{\mathrm{r}}\left(2^{\mathrm{kb}}-1\right)+2^{\mathrm{r}}-1$, show that

$$
\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{\operatorname{gcd}(a, b)}-1 .
$$

3. (a) Let $z=a+b i$ be a complex number with integer components a and b (a Gaussian integer). Describe geometrically the set of all multiples of z, that is the set of numbers $z z^{\prime}$, where z^{\prime} is also a Gaussian integer.
(b) Using the previous question (or rounding z / w to the closest Gaussian integer), explain how to divide Gaussian integers with remainder: show that for every two Gaussian integers z and w there exists Gaussian integers q and r such that $z=w q+r$ and $0 \leqslant|r|<|w|$.
4. Modify the " $p_{1} p_{2} \cdots p_{n}-1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form $3 \mathrm{k}-1$ (Hint: study prime divisors of $3 p_{1} p_{2} \cdots p_{n}-1$, bearing in mind that every prime $p \neq 3$ is either $3 k+1$ or $3 k-1$ for some k).
