MA2317: Introduction to Number Theory
 Tutorial problems, October 22, 2010

1. Solve the system of congruences

$$
\begin{array}{ll}
x \equiv 1 & (\bmod 3) \\
x \equiv 5 & (\bmod 7) \\
x \equiv 9 & (\bmod 11)
\end{array}
$$

2. Which of the following systems of congruences do have integer solutions?
(a) $\begin{aligned} & x \equiv 11 \quad(\bmod 84), \\ & x \equiv 8 \quad(\bmod 36) .\end{aligned}$
(b) $\begin{aligned} & x \equiv 11 \quad(\bmod 84), \\ & x \equiv 5 \quad(\bmod 36) .\end{aligned}$
(c) $\begin{aligned} & x \equiv 11 \quad(\bmod 84), \\ & x \equiv 23 \\ & (\bmod 36) .\end{aligned}$
3. Compute the following Legendre symbols:
(a) $\left(\frac{23}{103}\right) ;\left(\right.$ b) $\left(\frac{47}{101}\right) ;(\mathbf{c})\left(\frac{253}{257}\right)$.
4. Which of the following congruences have solutions?
(a) $x^{2}-7 x+3 \equiv 0(\bmod 5)$;
(b) $x^{2}+2 x-9 \equiv 0(\bmod 97) ;$
(c) $x^{2}-7 x+3 \equiv 0(\bmod 35)$?
5. In class, we proved that $\left(\frac{-1}{\mathrm{p}}\right)=(-1)^{\frac{p-1}{2}}$. Using that, show that for every n all prime divisors of $4 n^{2}+1$ are of the form $4 k+1$, and adapt the " $p_{1} p_{2} \cdots p_{n}-1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form $4 k+1$.
