MA2317: Introduction to Number Theory Tutorial problems, October 22, 2010

1. Solve the system of congruences

$$\begin{array}{ll} x\equiv 1 \pmod{3},\\ x\equiv 5 \pmod{7},\\ x\equiv 9 \pmod{11}. \end{array}$$

2. Which of the following systems of congruences do have integer solutions?

(a)
$$\begin{array}{c} x \equiv 11 \pmod{84}, \\ x \equiv 8 \pmod{36}. \end{array}$$
 (b) $\begin{array}{c} x \equiv 11 \pmod{84}, \\ x \equiv 5 \pmod{36}. \end{array}$ (c) $\begin{array}{c} x \equiv 11 \pmod{84}, \\ x \equiv 23 \pmod{36}. \end{array}$

3. Compute the following Legendre symbols: (a) $\left(\frac{23}{103}\right)$; (b) $\left(\frac{47}{101}\right)$; (c) $\left(\frac{253}{257}\right)$. 4. Which of the following congruences have solutions? (a) $x^2 - 7x + 3 \equiv 0 \pmod{5}$; (b) $x^2 + 2x - 9 \equiv 0 \pmod{97}$; (c) $x^2 - 7x + 3 \equiv 0 \pmod{35}$? 5. In class, we proved that $\left(\frac{-1}{2}\right) = (-1)^{\frac{p-1}{2}}$. Using that, show

5. In class, we proved that $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$. Using that, show that for every **n** all prime divisors of $4n^2 + 1$ are of the form 4k + 1, and adapt the " $p_1p_2\cdots p_n-1$ "-argument proving the infinitude of primes to show that there are infinitely many primes of the form 4k + 1.