MA2317: Introduction to Number Theory

Tutorial problems, December 10, 2010

1. Solve the congruence $(\mathbf{a}) x^{2} \equiv 2(\bmod 7) ;(b) x^{2} \equiv 2(\bmod 49) ;$ (c) $x^{2} \equiv 2(\bmod 343)$.
2. Compute the p-adic expansions of (a) $\frac{2}{3}$ in \mathbb{Z}_{2}; (b) $-\frac{1}{6}$ in \mathbb{Z}_{7}.
3. Compute the p-adic expansions of $(\mathbf{a}) \frac{1}{1000}$ in $\mathbb{Q}_{5} ;\left(\right.$ b) $\frac{1}{6}$ in \mathbb{Q}_{3}.
4. Show that for every p the polynomial $\left(x^{2}-2\right)\left(x^{2}-17\right)\left(x^{2}-34\right)$ has roots in $\mathbb{Z}_{\mathfrak{p}}$.
5. Using the solution $x=1, y=2, z=3$ to the congruence $x^{7}+y^{7} \equiv z^{7}$ $(\bmod 7)$, show that the equation $x^{7}+y^{7}=z^{7}$ admits a nontrivial 7 -adic solution, so the Fermat's Last Theorem does not hold in \mathbb{Z}_{7}.
