MA2317: Introduction to Number Theory Tutorial problems, December 10, 2010

1. Solve the congruence (a) $x^2 \equiv 2 \pmod{7}$; (b) $x^2 \equiv 2 \pmod{49}$; (c) $x^2 \equiv 2 \pmod{343}$.

2. Compute the p-adic expansions of (a) $\frac{2}{3}$ in \mathbb{Z}_2 ; (b) $-\frac{1}{6}$ in \mathbb{Z}_7 . **3.** Compute the p-adic expansions of (a) $\frac{1}{1000}$ in \mathbb{Q}_5 ; (b) $\frac{1}{6}$ in \mathbb{Q}_3 . **4.** Show that for every p the polynomial $(x^2 - 2)(x^2 - 17)(x^2 - 34)$ has roots in \mathbb{Z}_p .

5. Using the solution x = 1, y = 2, z = 3 to the congruence $x^7 + y^7 \equiv z^7$ (mod 7), show that the equation $x^7 + y^7 = z^7$ admits a nontrivial 7-adic solution, so the Fermat's Last Theorem does not hold in \mathbb{Z}_7 .