TWO APPLICATIONS OF CYCLOTOMIC POLYNOMIALS

VLADIMIR DOTSENKO

BACKGROUND

The $n^{\text {th }}$ cyclotomic polynomial $\Phi_{n}(x)$ is defined as $\prod_{\eta}(x-\eta)$, where η runs over all primitive $n^{\text {th }}$ roots of 1 . Previously in class, we proved that this polynomial has integer coefficients and is irreducible over integers. It is also worth noting that since $\Phi_{n}(x)$ divides $x^{n}-1$, the constant term of $\Phi_{n}(x)$ divides the constant term of $x^{n}-1$ and is hence equal to ± 1 for every n.

DIRICHLET'S THEOREM FOR PRIMES $p \equiv 1(\bmod n)$

Theorem 1. For every integer n, there exist infinitely many primes $p \equiv 1(\bmod n)$.
The proof of this theorem relies on the following
Lemma. For every integer n, there exist a integer $A>0$ such that all prime divisors $p>A$ of values of $\Phi_{n}(c)$ at integer points c are congruent to 1 modulo n. In other words, prime divisors of values of the $n^{\text {th }}$ cyclotomic polynomial either are "small" or are congruent to 1 modulo n.

Let us explain how to use Lemma to prove Theorem 1. Assume that there are only finitely many primes congruent to 1 modulo n; let p_{1}, \ldots, p_{m} be those primes. Let us consider the number $c=$ $A!p_{1} p_{2} \cdots p_{m}$. The number $k=\Phi_{n}(c)$ is relatively prime to c (since the constant term of Φ_{n} is ± 1), so it is not divisible by any of the primes p_{1}, \ldots, p_{m}, and has no divisors $d \leq A$ either. This almost guarantees that we can find a new prime congruent to 1 modulo n : take any prime divisor p of k, and Lemma ensures that $p \equiv 1(\bmod n)$. The only problem that may occur is that $k= \pm 1$, so it has no prime divisors. In this case, replace k by $N k$ for N large enough, so that $N k$ is greater than all the roots of the equation $\Phi_{n}(x)= \pm 1$, with everything else remaining the same.

Proof of Lemma. Let us consider the polynomial $f(x)=(x-1)\left(x^{2}-1\right) \ldots\left(x^{n-1}-1\right)$. The polynomials $f(x)$ and $\Phi_{n}(x)$ have no common roots, so their gcd in $\mathbb{Q}[x]$ is equal to 1 , hence $a(x) f(x)+b(x) \Phi_{n}(x)=1$ for some $a(x), b(x) \in \mathbb{Q}[x]$. Let A denote the common denominator of all coefficients of $a(x)$ and $b(x)$. Then for $p(x)=A a(x), q(x)=A b(x)$ we have $p(x) f(x)+q(x) \Phi_{n}(x)=$ A, and $p(x), q(x) \in \mathbb{Z}[x]$. Assume that a prime number $p>A$ divides $\Phi_{n}(c)$ for some c. Then c is a root of $\Phi_{n}(x)$ modulo p, and consequently, $c^{n} \equiv 1(\bmod p)$. Let us notice that n is the order of c modulo p. Indeed, if $c^{k} \equiv 1(\bmod p)$ for some $k<n$, then c is a root of $f(x)$ modulo p, but the equality $p(x) f(x)+q(x) \Phi_{n}(x)=A$ shows that $f(x)$ and $\Phi_{n}(x)$ are relatively prime modulo p. Recall that $c^{p-1} \equiv 1(\bmod p)$ by Fermat's Little Theorem, so $p-1$ is divisible by n, the order of c, that is $p \equiv 1(\bmod n)$, and the lemma is proved.

Remark. Most available proofs of Theorem 1 that use cyclotomic polynomials use a different proof of Lemma. The main point that is being made by our proof is that it seems to accumulate the key ideas of elementary number theory: the Euclidean algorithm and its applications, the relationship between $\mathbb{Q}[x]$ and $\mathbb{Z}[x]$, the techniques based on the reduction modulo p, and the multiplicative group of integers modulo p (through Fermat's Little Theorem).

Wedderburn's Little Theorem

Theorem 2. Every finite division ring is commutative.
By a ring we mean a set R with two operations (sum and product) satisfying the usual axioms. The product does not have to be commutative, e.g. square matrices of the given size form a ring, and quaternions form a ring too. By a division ring we mean a ring where every nonzero element is invertible, e.g. quaternions. Thus, the theorem states that if R is a finite division ring, then it in fact is a field.

Let us recall several definitions from ring theory that we need in this proof.
For a ring R, its centre $Z(R)$ consists of all elements that commute with all elements from R :

$$
Z(R)=\{z \in R: z r=r z \text { for all } r \in R\}
$$

The centre of a ring is closed under sum and product, and so forms a subring of R. If R is a division ring, then $Z(R)$ is a field, and R is a vector space over this field.

More generally, if $S \subset R$, the centraliser of S is defined as the set of all elements that commute with all elements from S :

$$
C_{S}(R)=\{z \in R: z s=s z \text { for all } s \in S\}
$$

The centraliser of every subset is a subring of R, and in the case of a division ring, a field. Clearly, $C_{R}(R)=Z(R)$.

The last ingredient of the proof we need is the class formula for finite groups. Let G be a finite groups. For $g \in G$, denote by $C(g)$ the conjugacy class of g, that is the set of all elements of the form $h^{-1} g h$, where $h \in G$. Then G is a disjoint union of conjugacy classes. We have $\# C(g)=\frac{\# G}{\# C_{g}}$, where C_{g} is the centraliser subgroup (consisting, as in the case of rings, of all elements that commute with g).

Proof of Theorem 2. Our goal is to prove that $Z(R)=R$. Let $q=\# Z(R)$. Since R is a vector space over $Z(R)$, we have $\# R=q^{n}$, where n is the dimension of this vector space. Since R is a division ring, the set $G=R \backslash\{0\}$ is a group. Applying the class formula to this group, we obtain

$$
q^{n}-1=\sum_{\text {conjugacy classes }} \# C(g)=\sum_{\text {conjugacy classes }} \frac{q^{n}-1}{\# C_{g}}
$$

Let us look closer at this sum. It contains terms corresponding to conjugacy classes consisting of a single element (these are conjugacy classes of nonzero elements from the centre) and all other conjugacy classes. Every centraliser C_{g} of such a conjugacy class, with the zero element adjoined to it, forms a subring of R containing $Z(R)$, that is a vector space over $Z(R)$. Let n_{g} be the dimension of that vector space, $n_{g}<n$. We have

$$
q^{n}-1=q-1+\sum_{\substack{\text { non-central } \\ \text { conjugacy classes }}} \frac{q^{n}-1}{q^{n_{g}}-1}
$$

It is easy to see that $\frac{q^{n}-1}{q^{n} g}$ is an integer only if n_{g} divides n (and that in general $\operatorname{gcd}\left(q^{n}-1, q^{k}-1\right)=$ $q^{\operatorname{gcd}(n, k)}-1$), so in fact not only $\frac{q^{n}-1}{q^{n g}-1}$ is an integer but also $\frac{x^{n}-1}{x^{n g}-1}$ is a polynomial with integer coefficients. As polynomials in $x, x^{n_{g}}-1$ and $\Phi_{n}(x)$ are coprime, so $x^{n}-1$ is divisible by their product. This means that in our equality above all terms except for the term $q-1$ are divisible by $\Phi_{n}(q)$. Thus $q-1$ is divisible by $\Phi_{n}(q)$. But the latter is impossible for $n>1:|q-\eta|>|q-1|$ for all roots of unity $\eta \neq 1$, so $\left|\Phi_{n}(q)\right|=\prod_{\eta}|q-\eta|>|q-1|$. This completes the proof.

Remark. Irreducibility of cyclotomic polynomials, while of crucial importance for Galois Theory, is not really used in our proofs at all (contrary to what I might made you believe in class).

