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Background

The nth cyclotomic polynomial Φn(x) is defined as
∏
η(x − η), where η runs over all primitive

nth roots of 1. Previously in class, we proved that this polynomial has integer coefficients and is
irreducible over integers. It is also worth noting that since Φn(x) divides xn− 1, the constant term
of Φn(x) divides the constant term of xn − 1 and is hence equal to ±1 for every n.

Dirichlet’s theorem for primes p ≡ 1 (mod n)

Theorem 1. For every integer n, there exist infinitely many primes p ≡ 1 (mod n).

The proof of this theorem relies on the following

Lemma. For every integer n, there exist a integer A > 0 such that all prime divisors p > A of
values of Φn(c) at integer points c are congruent to 1 modulo n. In other words, prime divisors of
values of the nth cyclotomic polynomial either are “small” or are congruent to 1 modulo n.

Let us explain how to use Lemma to prove Theorem 1. Assume that there are only finitely many
primes congruent to 1 modulo n; let p1, . . . , pm be those primes. Let us consider the number c =
A!p1p2 · · · pm. The number k = Φn(c) is relatively prime to c (since the constant term of Φn is ±1),
so it is not divisible by any of the primes p1, . . . , pm, and has no divisors d ≤ A either. This almost
guarantees that we can find a new prime congruent to 1 modulo n: take any prime divisor p of k,
and Lemma ensures that p ≡ 1 (mod n). The only problem that may occur is that k = ±1, so it
has no prime divisors. In this case, replace k by Nk for N large enough, so that Nk is greater than
all the roots of the equation Φn(x) = ±1, with everything else remaining the same.

Proof of Lemma. Let us consider the polynomial f(x) = (x − 1)(x2 − 1) . . . (xn−1 − 1). The
polynomials f(x) and Φn(x) have no common roots, so their gcd in Q[x] is equal to 1, hence
a(x)f(x) + b(x)Φn(x) = 1 for some a(x), b(x) ∈ Q[x]. Let A denote the common denominator of all
coefficients of a(x) and b(x). Then for p(x) = Aa(x), q(x) = Ab(x) we have p(x)f(x)+q(x)Φn(x) =
A, and p(x), q(x) ∈ Z[x]. Assume that a prime number p > A divides Φn(c) for some c. Then c
is a root of Φn(x) modulo p, and consequently, cn ≡ 1 (mod p). Let us notice that n is the order
of c modulo p. Indeed, if ck ≡ 1 (mod p) for some k < n, then c is a root of f(x) modulo p, but
the equality p(x)f(x) + q(x)Φn(x) = A shows that f(x) and Φn(x) are relatively prime modulo p.
Recall that cp−1 ≡ 1 (mod p) by Fermat’s Little Theorem, so p− 1 is divisible by n, the order of c,
that is p ≡ 1 (mod n), and the lemma is proved.

Remark. Most available proofs of Theorem 1 that use cyclotomic polynomials use a different
proof of Lemma. The main point that is being made by our proof is that it seems to accumulate
the key ideas of elementary number theory: the Euclidean algorithm and its applications, the
relationship between Q[x] and Z[x], the techniques based on the reduction modulo p, and the
multiplicative group of integers modulo p (through Fermat’s Little Theorem).
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Wedderburn’s Little Theorem

Theorem 2. Every finite division ring is commutative.

By a ring we mean a set R with two operations (sum and product) satisfying the usual axioms.
The product does not have to be commutative, e.g. square matrices of the given size form a ring,
and quaternions form a ring too. By a division ring we mean a ring where every nonzero element
is invertible, e.g. quaternions. Thus, the theorem states that if R is a finite division ring, then it
in fact is a field.

Let us recall several definitions from ring theory that we need in this proof.
For a ring R, its centre Z(R) consists of all elements that commute with all elements from R:

Z(R) = {z ∈ R : zr = rz for all r ∈ R}.
The centre of a ring is closed under sum and product, and so forms a subring of R. If R is a division
ring, then Z(R) is a field, and R is a vector space over this field.

More generally, if S ⊂ R, the centraliser of S is defined as the set of all elements that commute
with all elements from S:

CS(R) = {z ∈ R : zs = sz for all s ∈ S}.
The centraliser of every subset is a subring of R, and in the case of a division ring, a field. Clearly,
CR(R) = Z(R).

The last ingredient of the proof we need is the class formula for finite groups. Let G be a finite
groups. For g ∈ G, denote by C(g) the conjugacy class of g, that is the set of all elements of the
form h−1gh, where h ∈ G. Then G is a disjoint union of conjugacy classes. We have #C(g) = #G

#Cg
,

where Cg is the centraliser subgroup (consisting, as in the case of rings, of all elements that commute
with g).

Proof of Theorem 2. Our goal is to prove that Z(R) = R. Let q = #Z(R). Since R is a vector
space over Z(R), we have #R = qn, where n is the dimension of this vector space. Since R is a
division ring, the set G = R \ {0} is a group. Applying the class formula to this group, we obtain

qn − 1 =
∑

conjugacy classes

#C(g) =
∑

conjugacy classes

qn − 1
#Cg

.

Let us look closer at this sum. It contains terms corresponding to conjugacy classes consisting of
a single element (these are conjugacy classes of nonzero elements from the centre) and all other
conjugacy classes. Every centraliser Cg of such a conjugacy class, with the zero element adjoined to
it, forms a subring of R containing Z(R), that is a vector space over Z(R). Let ng be the dimension
of that vector space, ng < n. We have

qn − 1 = q − 1 +
∑

non-central
conjugacy classes

qn − 1
qng − 1

.

It is easy to see that qn−1
qng−1 is an integer only if ng divides n (and that in general gcd(qn−1, qk−1) =

qgcd(n,k) − 1), so in fact not only qn−1
qng−1 is an integer but also xn−1

xng−1 is a polynomial with integer
coefficients. As polynomials in x, xng − 1 and Φn(x) are coprime, so xn − 1 is divisible by their
product. This means that in our equality above all terms except for the term q− 1 are divisible by
Φn(q). Thus q− 1 is divisible by Φn(q). But the latter is impossible for n > 1: |q− η| > |q− 1| for
all roots of unity η 6= 1, so |Φn(q)| =

∏
η |q − η| > |q − 1|. This completes the proof.

Remark. Irreducibility of cyclotomic polynomials, while of crucial importance for Galois Theory,
is not really used in our proofs at all (contrary to what I might made you believe in class).
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