2BA1: Mathematics for Students in Computer Science Homework problems due May 2, 2008

1. For the 3-periodic sequence of complex numbers

$$
a=\{\ldots, 2+i, 0,1-i, 2+i, \ldots\}
$$

(that is, $a_{0}=2+i, a_{1}=0$ etc.), compute its discrete Fourier transform, its convolution with itself $a \star a$, and the discrete Fourier transform of $a \star a$.
2. Compute the product of quaternions $2-i+7 j$ and $1+i+k$.
3. For vectors $\mathbf{u}=(6,2,-1), \mathbf{v}=(2,-1,1)$, and $\mathbf{w}=(-1,-1,1)$, compute $(\mathbf{u}, \mathbf{w}), \mathbf{v} \times \mathbf{u}$, and $(\mathbf{u}, \mathbf{v} \times(\mathbf{u} \times \mathbf{w}))$.
4. Find the image of the point $(1,1,1)$ in 3 -space under the rotation through $\frac{2 \pi}{3}$ about the line connecting the origin with $(9,2,6)$.
5. (a) List all numbers between 0 and 24 that are coprime to 24 .
(b) For any number k between 0 and 24 that is coprime to 24 , find a number l such that $k l \equiv 1(\bmod 24)$.
6. Show that for any integers a and b,

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(5 a+12 b, 12 a+29 b) .
$$

7. (a) Use the Euclidean algorithm to compute the greatest common divisor of 357 and 239.
(b) Describe all integer solutions to $357 x-239 y=4$.
(c) Find all integers \mathfrak{n} congruent to 1 modulo 357 and to 67 modulo 239 . In other words, solve the system of congruences

$$
\left\{\begin{array}{l}
n \equiv 1 \quad(\bmod 357) \\
n \equiv 67 \quad(\bmod 239)
\end{array}\right.
$$

