The last question is more tricky than the other ones and therefore is optional.

1. (a) List all numbers between 0 and 18 that are coprime to 18 .
(b) For any number k between 0 and 18 that is coprime to 18 , find a number l such that $k l \equiv 1(\bmod 18)$.
(c) Without actually computing products, prove that the product of all numbers from 1 to 18 that are coprime to 18 is congruent to -1 modulo 18 .
2. Use the Euclidean algorithm to compute the greatest common divisor of 5124 and 232, and find a representation

$$
\operatorname{gcd}(5124,232)=5124 k+232 l
$$

3. (a) Use the Euclidean algorithm to compute the greatest common divisor of 3157 and 639 .
(b) Describe all integer solutions to $3157 x-639 y=3$.
(c) Find all integers \mathfrak{n} congruent to 2 modulo 3157 and to 3 modulo 639. In other words, solve the system of congruences

$$
\begin{cases}x \equiv 2 & (\bmod 3157) \\ x \equiv 3 & (\bmod 639)\end{cases}
$$

4. Prove that $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)=2^{\operatorname{gcd}(a, b)}-1$ for all positive integers a and b.
