MA3413: Group representations I Homework problems due on October 4, 2012

1. A function in n variables $x_{1}, x_{2}, \ldots, x_{n}$ is called (fully) symmetric, if

$$
f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for all permutations $\sigma \in S_{n}$, and (fully) skew-symmetric, if

$$
f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)=\operatorname{sgn}(\sigma) f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for all permutations $\sigma \in S_{n}$.
(a) Prove that any function of 2 variables can be represented as a sum of a symmetric and a skew-symmetric function.
(b) Give an example showing that the previous statement is not true for functions in 3 variables. (Hint: take $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\mathrm{x}_{1}$.)
2. (a) Let $\omega=\frac{1+\sqrt{-3}}{2}$ be a primitive cubic root of unity. Check that

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right)=(a+b+c)\left(a+w b+w^{2} c\right)\left(a+w^{2} b+\omega c\right) .
$$

(Hint: show that $(a+b+c),\left(a+\omega b+\omega^{2} c\right)$, and $\left(a+w^{2} b+\omega c\right)$ are the eigenvalues of this matrix.)
(b) The numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are put in the vertices of a regular triangle. Consider a transformation that replaces each of the numbers by the arithmetic mean of the numbers in neighbour vertices (simultaneously; for example, after the first operation one gets $\frac{\mathrm{b}+\mathrm{c}}{2}, \frac{\mathrm{a}+\mathrm{c}}{2}, \frac{\mathrm{a}+\mathrm{b}}{2}$). Let a_{n} be the number at the first vertex after n iterations; thus, $a_{0}=a, a_{1}=\frac{b+c}{2}, a_{2}=\frac{2 a+b+c}{4}$ etc. Does the sequence $\left\{a_{n}\right\}$ converge to a limit as $n \rightarrow \infty$?
4. For two elements a and b of a group G, the element $a b a^{-1} b^{-1}$ is called the commutator of a and b. The group generated by all commutators is called the derived group, or the commutator subgroup of G , and is denoted by $[\mathrm{G}, \mathrm{G}]$.
(a) Prove that the commutator subgroup is normal, and that the quotient $\mathrm{G} /[\mathrm{G}, \mathrm{G}]$ is abelian.
(b) Prove that the commutator subgroup is contained in the kernel of any 1-dimensional representation.
(c) Prove that the number of (equivalence classes of) 1-dimensional representations of any group G is equal to the same number for the group $G /[G, G]$.
5. For each positive integer n give an example of a group that has an irreducible complex representation of dimension n. (Hint: try $\mathrm{S}_{\mathrm{n}+1}$.)

