MA3413: Group representations I

Homework problems due on October 18, 2012
In all the problems below, the ground field is the field of complex numbers.

1. Show that any irreducible representation of a finite abelian group is one-dimensional.
2. For each of the following cases, find a decomposition of the representation (V, ρ) of the group G into a direct sum of irreducible representations, and compute the dimension of the space of intertwining operators on it:
(a) $G=\mathbb{Z} / n \mathbb{Z}=\left\{e, g, g^{2}, \ldots, g^{n-1}\right\}, V=\mathbb{C}^{n}, \rho(g)$ is a cyclic shift of basis vectors: $\rho(\mathrm{g}) e_{1}=e_{2}, \ldots, \rho(\mathrm{~g}) e_{\mathrm{n}}=e_{1}$;
(b) $G=S_{n}, V=\mathbb{C}^{n}, \sigma \in S_{n}$ permutes basis vectors accordingly: $\rho(\sigma) e_{i}=e_{\sigma(i)} ;$
(c) $\mathrm{G}=\mathrm{S}_{3}$, the representation is its (left) regular representation.
3. Find in the dihedral group D_{n} (group of symmetries of the regular $n-$ gon) two elements a, b that generate this group and satisfy relations $a^{n}=e$, $\mathrm{b}^{2}=e$, and $\mathrm{ba}=\mathrm{a}^{-1} \mathrm{~b}$.
4. Find all (equivalence classes of) 1-dimensional representations of (a) $\mathrm{D}_{4} ;\left(\right.$ b) $\mathrm{D}_{5} ;$ (c) D_{n}; (d) Q_{8} (quaternion units).
5. Find all (equivalence classes of) 2-dimensional representations of (a) $\mathbb{Z} / 5 \mathbb{Z}$; (b) $\mathrm{D}_{4} ;(\mathbf{c}) \mathrm{D}_{5}$; (d) Q_{8}.
6. Write down all irreducible characters for (a) $S_{3}=D_{3} ;(\mathbf{b}) D_{4} ;(\mathbf{c}) D_{5}$; (d) Q_{8}. Check directly the orthonormality property for these characters.

Optional question (does not count towards the continuous assessment): Factor the Dedekind-Frobenius determinant (determinant of the multiplication table of the group that we discussed in the first lecture) for S_{3}, D_{4}, and Q_{8} (you can use any computer software of your choice to do it). Can you guess how characters of irreps can be read from the factors of the determinant?

