MA3413: Group representations I Homework problems due on October 18, 2012

In all the problems below, the ground field is the field of complex numbers.

1. Show that any irreducible representation of a finite abelian group is one-dimensional.

2. For each of the following cases, find a decomposition of the representation (V, ρ) of the group G into a direct sum of irreducible representations, and compute the dimension of the space of intertwining operators on it:

(a) $G = \mathbb{Z}/n\mathbb{Z} = \{e, g, g^2, \dots, g^{n-1}\}, V = \mathbb{C}^n, \rho(g)$ is a cyclic shift of basis vectors: $\rho(g)e_1 = e_2, \dots, \rho(g)e_n = e_1;$

(b) $G=S_n,~V=\mathbb{C}^n,~\sigma\in S_n$ permutes basis vectors accordingly: $\rho(\sigma)e_i=e_{\sigma(i)};$

(c) $G = S_3$, the representation is its (left) regular representation.

3. Find in the dihedral group D_n (group of symmetries of the regular ngon) two elements a, b that generate this group and satisfy relations $a^n = e$, $b^2 = e$, and $ba = a^{-1}b$.

4. Find all (equivalence classes of) 1-dimensional representations of (a) D_4 ; (b) D_5 ; (c) D_n ; (d) Q_8 (quaternion units).

5. Find all (equivalence classes of) 2-dimensional representations of (a) $\mathbb{Z}/5\mathbb{Z}$; (b) D_4 ; (c) D_5 ; (d) Q_8 .

6. Write down all irreducible characters for (a) $S_3 = D_3$; (b) D_4 ; (c) D_5 ; (d) Q_8 . Check directly the orthonormality property for these characters.

Optional question (does not count towards the continuous assessment): Factor the Dedekind–Frobenius determinant (determinant of the multiplication table of the group that we discussed in the first lecture) for S_3 , D_4 , and Q_8 (you can use any computer software of your choice to do it). Can you guess how characters of irreps can be read from the factors of the determinant?