MA3413: Group representations I
 Homework problems due on November 1, 2012

1. Let V be an n -dimensional vector space. Consider the representation of S_{3} in the space $\mathrm{V} \otimes \mathrm{V} \otimes \mathrm{V}$, where any $\sigma \in \mathrm{S}_{3}$ permutes the factors accordingly:

$$
\rho(\sigma)\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=v_{\sigma^{-1}(1)} \otimes v_{\sigma^{-1}(2)} \otimes v_{\sigma^{-1}(3)}
$$

(Note that we have to put σ^{-1} here to get a homomorphism: $\rho(\tau) \rho(\sigma)\left(\nu_{1} \otimes v_{2} \otimes v_{3}\right)=$ $=\rho(\tau)\left(v_{p_{1}} \otimes v_{p_{2}} \otimes v_{p_{3}}\right)$, where $\sigma\left(p_{i}\right)=i$, and $\left.\rho(\tau)\left(v_{p_{1}} \otimes v_{p_{2}} \otimes v_{p_{3}}\right)=v_{p_{q_{1}}} \otimes v_{p_{q_{2}}} \otimes v_{p_{q_{3}}}\right)$, where $\tau\left(q_{i}\right)=i$. Therefore we have $\tau \sigma\left(p_{q_{i}}\right)=\tau\left(q_{i}\right)=i$, so $\left.\rho(\tau) \rho(\sigma)\left(v_{1} \otimes v_{2} \otimes v_{3}\right)=\rho(\tau \sigma)\left(v_{1} \otimes v_{2} \otimes v_{3}\right).\right)$

Compute the multiplicities of irreducible representations of S_{3} in this representation.
We use the following notation for five irreducible representations representations of S_{4} : $\mathbb{1}$ - the trivial representation, sgn - the sign representation, U - the 2-dimensional representation (obtained from a nontrivial homomorphism $\mathrm{S}_{4} \rightarrow \mathrm{~S}_{3}$), V - the 3-dimensional simplicial representation (a summand of the permutation representation in \mathbb{C}^{4}), $\mathrm{V}^{\prime} \simeq \mathrm{V} \otimes \operatorname{sgn}$ - the other 3-dimensional representation.
2. Write down the character table of S_{4}, and decompose into irreducibles all pairwise tensor products of irreducible representations.
3. Do all irreducibles occur as constituents in tensor powers of a (not faithful) representation U of S_{4} ?

Recall that the $n^{\text {th }}$ symmetric power of a vector space W (which is denoted by $S^{n}(W)$) is a subspace in its $\mathrm{n}^{\text {th }}$ tensor power $W^{\otimes n}$ which is spanned by all symmetric products

$$
w_{1} \cdot w_{2} \cdot \ldots \cdot w_{n}=\frac{1}{n!} \sum_{\sigma \in S_{n}} w_{\sigma(1)} \otimes w_{\sigma(2)} \otimes \ldots \otimes w_{\sigma(n)}
$$

for all $w_{1}, \ldots, w_{n} \in W$. The $n^{\text {th }}$ symmetric power $S^{n}(A)$ of an operator $A: W \rightarrow W$ is defined by

$$
S^{n}(A)\left(w_{1} \cdot w_{2} \cdot \ldots \cdot w_{n}\right)=\left(A w_{1}\right) \cdot\left(A w_{2}\right) \cdot \ldots \cdot\left(A w_{n}\right) .
$$

If (W, ρ) is a representation of a finite group $G, S^{n}(W)$ is an invariant subspace of all the operators $S^{n}\left(\rho(g)\right.$ acting on $W^{\otimes n}$; this subspace is called the $n^{\text {th }}$ symmetric power of the representation W.
4. Prove that $\chi_{S^{2}(\mathrm{~V})}(\mathrm{g})=\frac{1}{2}\left(\chi_{V}(\mathrm{~g})^{2}+\chi_{V}\left(\mathrm{~g}^{2}\right)\right)$. (Hint: recall that each individual matrix $\rho_{\vee}(\mathrm{g})$ can be diagonalised, use a basis of eigenvectors for V .)
5. Compute multiplicities of irreducibles in the following representations of S_{4} : (a) $S^{2}(V)$; (b) $S^{2}\left(\mathrm{~V}^{\prime}\right) ;(\mathbf{c}) \mathrm{S}^{2}(\mathrm{U})$.
6. Let (V, ρ) be a complex representation of a finite group G.
(a) Prove that $G_{\rho}=\left\{g \in G \mid \rho(g)=\lambda I d_{V}\right.$ for some $\left.\lambda \in \mathbb{C}\right\}$ is a normal subgroup of G.
(b) Prove that for any $g \in G$ we have $\left|\chi_{v}(g)\right| \leqslant \operatorname{dim}(V)$. (Hint: trace of an operator is equal to the sum of its eigenvalues.)
(c) Prove that $\left|\chi_{\vee}(g)\right|=\operatorname{dim}(V)$ if and only if g belongs to the subgroup G_{ρ} from the previous problem.

Optional question (does not count towards the continuous assessment): Prove Hermite's reciprocity: for the irreducible 2-dimensional representation V of S_{3}, and all positive integers k and l, we have $S^{k}\left(S^{l}(V)\right) \simeq S^{l}\left(S^{k}(V)\right)$.

