MA3413: Group representations I

Homework problems due on November 29, 2012

1. Let (V, ρ) be a complex representation of a finite group G. Compute the value of the character $\chi_{s^{3}(V)}(\mathrm{g})$ of the symmetric cube of V at $\mathrm{g} \in \mathrm{G}$, if the values $\chi_{V}(g), \chi_{V}\left(g^{2}\right)$, and $\chi_{V}\left(g^{3}\right)$ are given.
2. Find multiplicities of irreducibles in $S^{3}(\mathrm{~V})$, where V is the simplicial representation of S_{4}.
3. Find multiplicities of irreducible representations of A_{5} in $\mathbb{C M}$, where M is the set of faces of the dodecahedron.
4. For each two of five irreducible representations of A_{5}, find multiplicities of irreducibles in their tensor product.
5. Suppose that G_{1} and G_{2} are two finite groups.
(a) Describe the conjugacy classes of $\mathrm{G}_{1} \times \mathrm{G}_{2}$, assuming conjugacy classes of G_{1} and G_{2} known.
(b) Show that if $\left(V_{1}, \rho_{1}\right)$ is a complex irreducible representation of G_{1} and $\left(V_{2}, \rho_{2}\right)$ is a complex irreducible representation of G_{2}, then $\left(V_{1} \otimes V_{2}, \rho_{1} \otimes \rho_{2}\right)$, where $\rho_{1} \otimes \rho_{2}\left(g_{1}, g_{2}\right)=\rho_{1}\left(g_{1}\right) \otimes \rho_{2}\left(g_{2}\right)$, is a complex irreducible representation of $G_{1} \times G_{2}$. Show that every complex irreducible representation of $G_{1} \times G_{2}$ can be obtained this way.
