TRINITY COLLEGE

Faculty of Science
SCHOOL OF MATHEMATICS

JS Mathematics
2012/13
SS Mathematics

Module 3413: SAMPLE EXAM

Dr. Vladimir Dotsenko

For any task, the number of points you can get for a complete solution of this task is printed next to it.
For your convenience, character tables for A_{4}, A_{5}, S_{4}, and S_{5} are included; see the last page.
Unless otherwise stated, all groups are finite, and all representations are complex and finite dimensional

Log tables are available from the invigilators, if required.
Non-programmable calculators are permitted for this examination,—please indicate the make and model of your calculator on each answer book used.

1. (20 points) Define a group representation. What is meant by saying that two representations (V, ρ) and (W, π) are isomorphic?

Define the direct sum of two representations (V, ρ) and (W, π) of the same group G.
Prove that any finite dimensional complex representation of a finite group G is isomorphic to a direct sum of irreducible representations of that group.
2. (20 points) What is meant by saying that a representation (V, ρ) of a group G is a set representation?

Consider the set representation U_{k} of S_{n} that corresponds to the action of S_{n} on the set of all k-element subsets of $\{1,2, \ldots, n\}$.

Prove that $\mathrm{U}_{\mathrm{k}} \simeq \mathrm{U}_{\mathrm{n}-\mathrm{k}}$.
Compute the dimension of the space of intertwining operators $\operatorname{Hom}_{S_{n}}\left(U_{k}, U_{l}\right)$.
3. (20 points) Consider S_{4} as a subgroup in S_{5} and define a function ψ on S_{5} by the formula

$$
\psi(\mathrm{g})=\frac{1}{24} \sum_{\substack{\mathrm{h} \in S_{5}, \mathrm{hgh}^{-1} \in S_{4}}} \chi u\left(\mathrm{hgh}^{-1}\right)
$$

where U denotes the 2-dimensional irreducible representation of S_{4} (see the character table); if the sum is over an empty set, it is considered to be equal to zero. Prove that ψ is a character of some representation of S_{5}, and find multiplicities of irreducibles in that representation.
4. (20 points) Recall that the nth exterior (wedge) power of a vector space W (which is denoted by $\left.\Lambda^{n}(W)\right)$ is a subspace in its nth tensor power $W^{\otimes n}$ which is spanned by all skew-symmetric products

$$
w_{1} \wedge w_{2} \wedge \ldots \wedge w_{n}=\frac{1}{n!} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) w_{\sigma(1)} \otimes w_{\sigma(2)} \otimes \ldots \otimes w_{\sigma(n)}
$$

for all $w_{1}, \ldots, w_{n} \in W$. The nth exterior power $\Lambda^{n}(A)$ of an operator $A: W \rightarrow W$ is defined by

$$
\Lambda^{n}(A)\left(w_{1} \wedge w_{2} \wedge \ldots \wedge w_{n}\right)=\left(A w_{1}\right) \wedge\left(A w_{2}\right) \wedge \ldots \wedge\left(A w_{n}\right) .
$$

If (W, ρ) is a representation of a finite group $G,\left(\Lambda^{n}(W), \Lambda^{n}(\rho)\right)$ is its subrepresentation which is called the nth exterior power of the representation W.

For a representation V of a group G, prove that characters of V and $\Lambda^{2}(V)$ are related by

$$
\chi_{\wedge^{2}(V)}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}-\chi_{V}\left(g^{2}\right)\right)
$$

Find multiplicities of irreducibles in $\Lambda^{2}\left(\mathrm{U}_{1}\right)$ and in $\Lambda^{2}\left(\mathrm{U}_{2}\right)$, where U_{i} are the 3-dimensional irreducible representations of A_{5}.
5. (20 points) Does there exist a finite group which has precisely four one-dimensional representations, precisely one five-dimensional irreducible representation, and no other irreducible representations?

Using the fact that that the number of elements in the conjugacy class of $g \in G$ is equal to $\frac{\# G}{\# C_{g}}$, where C_{g} is the centraliser of g (the subgroup of all $h \in G$ such that $\mathrm{gh}=\mathrm{hg}$), prove that all finite groups with three conjugacy classes are $\mathbb{Z} / 3 \mathbb{Z}$ and S_{3}.

Prove that though $1+5^{2}+13^{2}$ is divisible by 5 and 13 , there is no finite group which has just three irreducible representations whose dimensions are 1,5 , and 13 .

Appendix: character tables of A_{4}, A_{5}, S_{4}, and S_{5}.
Notation: the top row of each table lists conjugacy classes; for S_{4} and S_{5} conjugacy classes are encoded by lengths of cycles, for A_{4} and A_{5} we use subscripts for splitting classes; for example 31_{1} and 31_{2} are two classes consisting of 3 -cycles. The second row indicates cardinalities of conjugacy classes. Further rows list irreducble characters (everywhere below $\omega=\frac{-1+\sqrt{-3}}{2}, \tau=$ $\left.\frac{1+\sqrt{5}}{2}\right)$. We use the notation $\mathbb{1}$ for the trivial representation, and sgn for the sign representation. For symmetric groups S_{n}, V denotes the nontrivial summand of the permutation representation in \mathbb{C}^{n}. For any representation M of S_{n}, we let $M^{\prime}=M \otimes \operatorname{sgn}$.

	1^{4}	2^{2}	31_{1}	31_{2}
$\#$	1	3	4	4
$\mathbb{1}$	1	1	1	1
R_{1}	1	1	ω	ω^{2}
R_{2}	1	1	ω^{2}	ω
V	3	-1	0	0

	1^{5}	$2^{2} 1$	31^{2}	5_{1}	5_{2}
$\#$	1	15	20	12	12
$\mathbb{1}$	1	1	1	1	1
U_{1}	3	-1	0	τ	$-\frac{1}{\tau}$
U_{2}	3	-1	0	$-\frac{1}{\tau}$	τ
V	4	0	1	-1	-1
W	5	1	-1	0	0

	1^{4}	21^{2}	2^{2}	31	4
$\#$	1	6	3	8	6
$\mathbb{1}$	1	1	1	1	1
sgn	1	-1	1	1	-1
U	2	0	2	-1	0
V	3	1	-1	0	-1
$\mathrm{~V}^{\prime}$	3	-1	-1	0	1

	1^{5}	21^{3}	31^{2}	$2^{2} 1$	41	32	5
$\#$	1	10	20	15	30	20	24
$\mathbb{1}$	1	1	1	1	1	1	1
sgn	1	-1	1	1	-1	-1	1
V	4	2	1	0	0	-1	-1
$\mathrm{~V}^{\prime}$	4	-2	1	0	0	1	-1
W	5	1	-1	1	-1	1	0
$\mathrm{~W}^{\prime}$	5	-1	-1	1	1	-1	0
$\Lambda^{2} \mathrm{~V}$	6	0	0	-2	0	0	1

