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Lecture 1

Lecture 1

24/9 12pm

1.1. Introduction. To a large extent, the theory of group representations
is an extension of linear algebra. Suppose we have a vector space without any
additional structure and we are interested in classi�cation up to isomorphism -
then it is just the dimension n of the vector space.

Object Classi�cation
(vector space, subspace) (n,m) with n ≥m (where n is the

dim. of the vector space, and m
of the subspace)

(vector space, linear transforma-
tion)

dimension and Jordan normal
form

The problem at hand about vector spaces is we want to identify the simplest
�building blocks� and to explain how to build everything from those.

Some examples of potential applications of the theory

● Take a triangle, label the edges a, b, c. After some �xed time step, we re-
place the label at each vertex by the average, i.e. b+c

2
, a+c

2
, a+b

2
respectively.

The question is then, if we repeatedly do this, will the values somehow
stabilise after a long time? This can be solved using basic analysis but
it is di�cult. Instead we consider the generalised case of the n-polygon
with rotational symmetry. It turns out that applying this procedure adds
additional symmetry that, when investigated, gives an easy solution.

a

b c

b+c
2

a+c
2

a+b
2

● Take a �nite group G and write out its Cayley table. For example Z/3Z

0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

or for Z/2Z
0̄ 1̄

0̄ 0̄ 1̄
1̄ 1̄ 0̄

Now for each g ∈ G, introduce the variable xg. For example in the case
Z/2Z

(x0̄ x1̄

x1̄ x0̄
)
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Lecture 2

and investigate the determinant. Dedekind observed that the determinant
seemed to factor very nicely in general. In the above case

det(x0̄ x1̄

x1̄ x0̄
) = x2

0̄ − x
2
1̄ = (x0̄ + x1̄)(x0̄ − x1̄)

He sent a letter to Frobenius describing this. The latter then tried to
explain this and in doing so essentially founded the area of representation
theory.

● We denote the symmetric group on n objects by Sn. Consider the cross-
product, it satis�es

(x1 × x2) × x3 + (x2 × x3) × x1 + (x3 × x1) × x2 = 0

This identity is invariant under permutation of indices (up to, perhaps,
multiplication by −1). Objects like this, that do not change �much� under
permutation of objects are studied extensively - they have signi�cance in
physics also. We would like to be able to classify these types of sym-
metries. Say we have a function of two arguments f(x1, x2). We call
functions that satisfy f(x1, x2) = f(x2, x1) symmetric. Functions that
satisfy f(x1, x2) = −f(x2, x1) are called skew-symmetric. It is fairly
easy to proove that every function of two arguments can be represented
as the sum of a skew-symmetric function and a symmetric function. But
for more than two variables the problem becomes much more di�cult.

The prerequisites for this course

(1) Linear algebra: trace, determinant, change of basis, diagonalisation of
matrices, vector spaces over arbitrary �elds.

(2) Algebra: groups (for the most part up to order 8)1, conjugacy classes &
the class formula

∣G∣ = ∑
conj. class c

∣G∣
∣Z(c)∣

where Z(c) is the centraliser of any element of the conjugacy class c. So
in the case of g0 ∈ c

Z(g0) = {g ∈ G ∣ g0g = gg0}

Lecture 2
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2.1. Examples of representations. As a �rst approximation, a representa-
tion tries to understand all about a group by looking at it as a vector space.

De�nition 1. Let G be a group, and V a vector space (over a �eld k), then a
representation of G on V is a group homomorphism

ρ∶G→ GL(V )
where GL(V ) is the group of invertible linear transformations of the space V .

Examples

(1) Let G be arbitrary, and let V = k. We want a group homomorphism
G→ k× = k/{0}. The trivial representation is ρ(g) = 1 for every g ∈ G.

1Up to isomorphism: order 2 is Z/2Z, odd primes are Z/nZ by the corollary to Lagrange's
theorem, order 4 are the Kleinsche-vierergruppe Z/2Z×Z/2Z and Z/4Z, order 6 is Z/6Z and S3 ≅ D3

(the dihedral group: the symmetries of a regular n-gon) and for order 8 are, in the Abelian case,
Z/8Z, Z/4Z ×Z/2Z and Z/2Z ×Z/2Z ×Z/2Z, and in the non-Abelian case D4 and the quaternions
Q8.
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Lecture 2

(2) (a) Let G be arbitrary, and let V = kG := the vector space with a ba-
sis {eg}g∈G. It is enough to understand how the element acts on
each basis element ρl(g)eh := egh. We must check that ρl(g1g2) =
ρl(g1)ρl(g2); it is enough to determine the e�ect of these elements
on basis elements. We have

ρl(g1g2)eh = e(g1g2)h = eg1(g2h)
= ρl(g1)eg2h = ρl(g1)ρl(g2)eh

So ρl(g1g2) and ρl(g1)ρl(g2) map every basis vector to the same
vector, hence are equal. This representation is called the left regular
representation of G.

(b) G is arbitrary, V = kG. Let ρr(g)eh = ehg−1 (Exercise: show that
de�ning this the other way around does not work.). We have

ρr(g1g2)eh = eh(g1g2)−1 = ehg−12 g−11
= ρr(g1)ehg−12

= ρr(g1)ρr(g2)eh
(3) Let G = Z/2Z and V = k. The only constraint is ρ(1̄)2 = 1, so two

di�erent one-dimensional representations for chark ≠ 2 (there is only one
one-dimensional representation for chark = 2). We have

ρ(0̄) = 1

ρ(1̄) = 1

(4) Let G = Z/2Z and V = k2. We have

ρ(0̄) = (1 0
0 1

) ρ(1̄) = (1 0
0 −1

)

or

ρ(0̄) = (1 0
0 1

) ρ(1̄) = (0 1
1 0

)

(5) Take G = S3 and V = R2. Take an arbitrary triangle in the plane, let
the origin be the center of the triangle. Rotations of the triangle are
represented by

(1 0
0 1

) , (cos( 2π
3
) − sin( 2π

3
)

sin( 2π
3
) cos( 2π

3
)) , (cos( 4π

3
) − sin( 4π

3
)

sin( 4π
3
) cos( 4π

3
))

Re�ections are also linear transformations, so represented by matrices
accordingly.

De�nition 2. Let (V1, ρ1) and (V2, ρ2) be two representations of the same group
G. Then their direct sum (V1 ⊕V2, ρ1 ⊕ ρ2) is de�ned as follows: the vectors of the
representation are V1⊕V2, the homomorphisms G→ GL(V )(V1⊕V2) are de�ned as

(ρ1 ⊕ ρ2)(g) = (ρ1(g) 0
0 ρ2(g)

)

We check

(ρ1 ⊕ ρ2)(g1g2) = (ρ1(g1g2) 0
0 ρ2(g1g2)

)

= (ρ1(g1)ρ1(g2) 0
0 ρ2(g1)ρ2(g2)

)

= (ρ1(g1) 0
0 ρ2(g1)

)(ρ1(g2) 0
0 ρ2(g2)

)
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Lecture 3

So it is a homomorphism.

De�nition 3. Suppose that (V, ρ) is a representation of G. It is said to be re-
ducible if there exists a subspace U ⊂ V with U ≠ {0} or V , which is invariant with
respect to all ρ(g) i.e. ρ(g)U ⊂ U for g ∈ G. Otherwise it is said to be irreducible.

The representation given above for S3 is irreducible.

Lecture 3
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When we stopped on Monday, we had given the de�nition of an irreducible repre-
sentation and one example. We will now discuss some more examples.

Recall that the sum of two representations is just the direct sum of the vectors
spaces - the block matrices, and an irreducible representation is a representation
without a non-trivial invariant subspace. Aside: note that we will only discuss
representations of positive dimension. V1 ⊕ V2 has invariant subspaces V1, V2 so is
not irreducible.

Last lecture I stated that the representation that I gave for S3 constructed last
time is irreducible. To see this: if it were not, all operators representing elements
of S3 would have a common eigenvector.

Over real numbers, each re�ection has just two possible directions for eigenvectors
so altogether no common eigenvectors. Over C: real eigenvectors of re�ections
remain the only eigenvectors, so the same argument works.

3.1. Tensor products. Recall the tensor product: let V,W be vectors spaces,
then V ⊗W is the span of vectors (v,w) for v ∈ V and w ∈ W quotiented out by
the relations

v ⊗ (w1 +w2) = v ⊗w1 + v ⊗w2

(v1 + v2) ⊗w = v1 ⊗w + v2 ⊗w
λ(v ⊗w) = (λv) ⊗w = v ⊗ (λw)

to obtain the tensor product.

De�nition 4. If (V, ρ) and (W,ϕ) are two representations of the same group G,
then the tensor product (V ⊗W,ρ⊗ ϕ) is de�ned as follows

(ρ⊗ ϕ)(g)(v ⊗w) := (ρ(g)(v)) ⊗ (ϕ(g)(w))
extended to all V ⊗W by linearity.

ρ⊗ϕ is a group homomorphism if ρ and ϕ are (it is extremely tedious to show
that this is a homomorphism so we will not do it here).

Exercise: Let us �x a basis {ei} of V , a basis {fj} of W , and order a basis of
V ⊗W as follows

e1 ⊗ f1, e1 ⊗ f2, . . . , e1 ⊗ fm, e2 ⊗ f1, . . . , e2 ⊗ fm, . . . , . . . , en ⊗ f1, . . . , en ⊗ fm
Suppose that ρ(g) has the matrix A relative to {ei}, ϕ(g) has the matrix B relative
to {fj}
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Lecture 4

(1) Write down the matrix of (ρ⊗ ϕ)(g) relative to the basis above.
(2) tr((ρ⊗ ϕ)(g)) = tr(ρ(g)) ⋅ tr(ϕ(g)).

De�nition 5. If we have two representations (V1, ρ1) and (V2, ρ2) of the same
group G, then they are said to be isomorphic or equivalent if there exists a
vector space isomorphism ϕ∶V1 ≃ V2 such that for each g ∈ G

ρ2(g) ○ ϕ = ϕ ○ ρ1(g)

V1

ρ1(g) //

ϕ

��

V1

ϕ

��
V2

ρ2(g)
// V2

In other words, if we work with matrices, two representations are equivalent if
they can be identi�ed by change of coordinates.

To illustrate this de�nition, let us go back to one of the representations that
we discussed on Monday.

Proposition 1. For any G, (kG, ρl) ≃ (kG, ρr).

Proof. Let us de�ne ϕ∶kG → kG as follows: ϕ(eg) = eg−1 . This is invertible
because if you apply it twice you get the identity. Let us check that it agrees with
what we have here: we must show that ϕ ○ ρl(g) = ρr(g) ○ ϕ. It is enough to check
this for the basis

ϕ ○ ρl(g)(eh) = ϕ(egh) = e(gh)−1
ρr(g) ○ ϕ(eh) = ρr(g)(eh−1) = eh−1g−1

because (gh)−1 = h−1g−1, the result follows. �

We will now deal with the question: is (kG, ρl) irreducible? The answer is no.
For the case where G is �nite, consider

v = ∑
g∈G

eg

Then for each h ∈ G,
ρl(h)(v) = v

because

ρl(h)
⎛
⎝∑g∈G

eg
⎞
⎠
= ∑
g∈G

ehg = ∑
g∈G

eg = v

Now regarding textbooks: there is one by Curtis and Reiner �Methods of Rep-
resentation Theory: With Applications to Finite Groups and Orders�; very compre-
hensive - ten times more than we could cover. Another is �Linear Representations
of Finite Groups� by J.P. Serre - very concise, and clear but covers more than we
can cover. And of course the textbook by Fulton and Harris.

Lecture 4
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Lecture 4

4.1. Decomposing the left-regular representation. The last thing we
discussed on Thursday was the equivalence of representations which is just the
same sort of equivalence that you know from linear algebra, it is just equivalence
under change of coordinates essentially. There was an example over 1-dimensional
subspaces of the left regular representation which looked exactly like the trivial
representation. Let us look at that again because we will use this again often.

Let G be a �nite group, and consider again kG equipped with the left regular
representation ρl and let v ∈ kG. Consider

v = ∑
g∈G

eg

For each g ∈ G we have ρl(g)v = v. The linear span of kv ⊂ kG is a 1-dimensional
subspace, invariant under all ρl(g) and as a representation is isomorphic to the
trivial representation.

Recall that our ultimate goal is to understand all representations of a �nite
group by looking at the irreducible representations. We now want to do this with
this representation. We make some assumptions: either char k = 0 or char k is not
a divisor of the number of elements in our group. Then there exists a subspace
W ⊂ kG which is invariant under all ρl(g) such that kG ≃ kv⊕W - an isomorphism
of representations, where we have

ρl ≃ trivial⊕ ρl∣W
Let us proove this

Proof. De�neW := {∑g∈G cgeg ∶∑g∈G cg = 0} which is invariant under all ρl(g)

ρl(h) (∑ cgeg) = ∑ cgehg

= ∑
g∈G

ch−1hgehg

= ∑ ch−1g′eg′

with ∑g′∈G ch−1g′ = 0. There are now many ways to proceed. We have dimkv = 1
and dimW = ∣G∣ − 1 so it is enough to show that their intersection is equal to zero
i.e. kv ∩W = {0}. For ∑g∈G cgeg ∈ kv, all cg are equal to each other. Take g0 ∈ G
then

∑
g∈G

cg = ∣G∣ ⋅ cg0

If ∑ cgeg ∈W we conclude that ∣G∣ ⋅ cg0 = 0 since in W all coe�cients are equal to
zero. If cg0 = 0, then all cg = 0, and we proved that kv ∩W = {0}. Otherwise ∣G∣ = 0
in k which is a contradiction. �

There is an alternative argument going in the other direction. We used the fact
that if you have two subspaces of complementary dimensions, then their direct sum
is the entire space i� they have zero intersection. Take some typical vector in your
vector space kG

∑
g∈G

ageg ∈ kG

then their sum can be written

∑
g∈G

⎛
⎝
ag −

1

∣G∣ ∑h∈G
ah

⎞
⎠
eg + ∑

g∈G

⎛
⎝

1

∣G∣ ∑h∈G
ah

⎞
⎠
eg

10



Lecture 5

where the �average� element given here forces: the �rst element belongs to W and
the second one belongs to k ⋅ v so we have kG =W + kv2 and since the dimensions
are complementary, the sum must be direct.

One example that shows that our assumptions about characteristics are impor-
tant: take G = Z/2Z and k = F2. So G consists of the elements {0̄, 1̄} and F2 consists
of {0,1}. kG is a 2-dimensional representation of G over k. Then v = e0̄ + e1̄ which
is an invariant subspace. What happens now is that there is no way to choose a
complementary subspace. In fact, the only invariant subspace is the one just given.
How to see this? Any invariant subspace must be one-dimensional, suppose ae0̄+be1̄

spans it. Let us take this element under the action

ρl(1̄)(ae0̄ + be1̄) = ae1̄ + be0̄

So we must check under what conditions ae1̄ + be0̄ is proportional to ae0̄ + be1̄. The
coe�cient of proportionality is an element of k so therefore it is either 0 or 1. If
it is 0 then a = b = 0 and it is not a 1-dimensional subspace, and if it is 1 then
a = b so it's k ⋅v. So we see in positive characteristic we get these undesirable things
happening.

Let us formulate a more general result. From now on (except for rare explicit
cases) we assume that 1/∣G∣ make sense in in our �eld k - note this also assumes
our group is �nite.

Theorem 2. Let (V, ρ) be a representation of G and let U ⊂ V be invariant under
all ρ(g). Then there exists a subspace W ⊂ V that is also invariant under all ρ(g)
and such that V ≃ U ⊕W with

ρ ≃ ρ∣
U
⊕ ρ∣

W

Lecture 5

1/10 4pm

5.1. Complements of invariant subspaces. Continuing from last time the
proof of the theorem. We will give two proofs. One will only work over R and with
a modi�cation over C, whereas the other will work in generality.

Proof #1: Take k = R. Recall the proof in linear algebra that over real
numbers all symmetric matrices are diagonalisable. Our proof will mirror this
almost exactly.

Suppose that there exists a scalar product on our vector space which is invariant
with respect to the group action

(ρ(g)(v), ρ(g)(w)) = (v,w)

i.e. they are all representable as orthogonal matrices. Then if U ⊂ V is invariant,
we shall show that U⊥ is invariant. Indeed, let v ∈ U⊥ and u ∈ U . We have

(ρ(g)(v), u) = (ρ(g)(v), ρ(g)ρ(g)−1(u))
= (v, ρ(g)−1(u))
= (v, ρ(g−1)(u))
= 0

2If we set cg = ag −
1
∣G∣ ∑h∈G ah then ∑g∈G cg = ∑g∈G(ag −

1
∣G∣ ∑h∈G ah) = ∑g∈G ag −

∣G∣
∣G∣ ∑h∈G ah = 0 and the coe�cients 1

∣G∣ ∑h∈G ah clearly don't depend on g ∈ G.

11



Lecture 5

because of ρ(g−1)(u) ∈ U since U is invariant. It remains to show that an invariant
scalar product always exists. How to show this? Take some scalar product (v,w) ↦
f(v,w) and de�ne a new one

(v,w) = 1

∣G∣ ∑g∈G
f(ρ(g)(v), ρ(g)(w))

If we now apply some ρ(h)

(ρ(h)(v), ρ(h)(w)) = 1

∣G∣ ∑g∈G
f(ρ(g)ρ(h)(v), ρ(g)ρ(h)(w))

= (v,w) �

This works on R because we have �positive de�niteness� - a total ordering
on R. Otherwise we can have some non-trivial intersection of a subspace and its
orthogonal complement: if we take C2 and (z1,w1), (z2,w2) ↦ z1z2 + w1w2 then
(1, i) is orthogonal to itself.

Proof #2: To de�ne a direct sum decomposition on V ≃ U ⊕W is equivalent
to �nding a linear operator P such that

● P 2 = P
● kerP =W
● Im P = U

Remark. So how does it work? Suppose P 2 = P then we want to show
that V = kerP ⊕ Im P . We want to check whether kerP ∪ Im P = ∅.
Let v ∈ kerP . Then Pv = 0 and let v = Pw then

0 = Pv = PPw = P 2w = Pw = v
Then we write v = (Id−P )v +Pv and the �rst one is in the kernel and
the second is in the image.

Moreover, if Pρ(g) = ρ(g)P for all g, then the subspace W = kerP is invariant.
Indeed, if w ∈W then we have

Pρ(g)(w) = ρ(g)P (w) = ρ(g)(0) = 0

which implies that ρ(g)(w) ∈ kerP =W . Therefore, it is enough to show that there
exists an operator P such that

(1) P 2 = P
(2) U = Im P
(3) ρ(g)P = Pρ(g) for all g ∈ G

The idea is to take some P0 satisfying 1,2 - this is not di�cult because this just
means �nding a decomposition on the level of the vector spaces. Now put

P := 1

∣G∣ ∑g∈G
ρ(g)P0ρ(g)−1

Condition three is satis�ed (amounts to checking the same thing as in last lecture).
But we must check that replacing P0 by P does not �break� conditions one or two.
So: why is P 2 = P? First we show that Im P ⊂ U : if v ∈ V then ρ(g)−1(v) ∈ V so
P0ρ(g)−1(v) ∈ U because for P0, property two holds. Therefore ρ(g)P0ρ(g)−1(v) ∈ U
(due to invariance of U). So P (v) ∈ U . Next, suppose u ∈ U then ρ(g)−1(u) ∈ U due
to invariance of U . Therefore P0ρ(g)−1(u) = ρ(g−1)(u) because of properties one

12



Lecture 6

and two for P0
3. Finally, ρ(g)P0ρ(g)−1(u) = ρ(g)ρ(g−1)u = u so as a consequence

Pu = u. Finally, �nally, P 2(v) = P (P (v)) = P (v) since P (v) ∈ U .
Finally, �nally, �nally, Im P = U because P (u) = u on U . �

Lecture 6
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6.1. Intertwining operators and Schur's lemma. Last time we had: let
V be a representation of G and U ⊂ V an invariant subspace such that V ≃ U ⊕W .
Our strategy was to take an operator P0 such that P0 = P 2

0 with Im P0 = U . Then
we average over G

P = 1

∣G∣ ∑g∈G
ρ(g)P0ρ(g)−1

We showed that

● P 2 = P
● Im P = U
● ρ(g)P = Pρ(g) for g ∈ G

De�nition 6. Suppose that (V, ρ) is a representation of a group G, then operators
T satisfying

ρ(g)T = Tρ(g) for all g ∈ G
are called intertwining operators for V . More generally, if (V, ρ) and (W,ϕ) are
two representations of the group G then T ∶V →W satisfying

Tρ(g) = ϕ(g)T
are called intertwining operators from V to W .

Theorem 3 (Schur's lemma).
(1) Suppose that (V1, ρ1) and (V2, ρ2) are irreducible representations of a

group G. Then any intertwining operator T ∶V1 → V2 is either zero or
an isomorphism.

(2) Over the complex numbers (or any algebraically closed �eld), any inter-
twining operator T ∶V1 → V2 is scalar.

Proof. Consider the kernel of T , it satis�es kerT ⊂ V1. Our claim is that it is
invariant. Let v ∈ kerT

Tρ1(g)(v) = ρ2(g)T (v) = ρ2(g)(0) = 0

Therefore v ∈ kerT ⇒ ρ1(g)(v) ∈ kerT . But it is irreducible. Therefore there are
two cases: kerT = V1 or kerT = {0}. If kerT = V1 then T = 0. If kerT = {0}, T
is injective. Why is T surjective? Well, let's consider the image, I claim that the
image is an invariant subspace of V2. Let's suppose that w ∈ Im T and w = T (v)
then we have

ρ2(g)(w) = ρ2(g)T (v)
= Tρ1(g)(v) ∈ Im T

because T is injective. So either Im T = 0 or Im T = V2. But Im T = {0} ⇒ T =
0. And Im T = v2 ⇒ T is surjective. So it is injective and surjective, thus an
isomorphism as required.

For the second, part we will use the fact that every operator on a �nite dimen-
sional vector space has an eigenvalue. Assume that T ≠ 0 so it is an isomorphism.
Without loss of generality, V1 = V2 i.e. T ∶V1 → V1. Let λ be an eigenvalue of T .

3If P 2 = P and U = Im P then P = Id on U : let v ∈ V and v ≠ 0 and Pv = w ≠ 0 say, then
P 2v = Pv = w and P (Pv) = Pw therefore Pw = w.

13



Lecture 7

Then consider the operator T − λ ⋅ Id which is an intertwining operator. It has a
non-zero kernel

ker(T − λ ⋅ Id) ≠ {0}
and thus cannot be an isomorphism, so by the �rst part is zero, i.e. T = λ ⋅ Id. �

We will see on Monday that this result allows us to build all the representation
theory over complex numbers in a nice and simple way. For the next week and
a half we will only look at representations where the ground �eld is the complex
numbers, k = C.

Informally, our goal is the following: since C has characteristic zero, our theo-
rem from Monday about invariant complements holds. Our strategy is, if we have
a complex representation then use this theorem, we will get two complementary
subspaces which are invariant, then we apply it again and again until everything
is irreducible. This will work since we are working over �nite dimensional vector
spaces.

Recall the left regular representation kG. Let us view this in the following way:
this vector space has the structure of an algebra over k. The product is given on
basis elements in the most straight-forward way as egeh := egh. Associativity is a
consequence of the associativity of the group operation. Then representations of a
group G are in a one-to-one correspondence with left modules over this algebra kG
- kG⊗M →M or kG⊗ kG⊗M ⇉ kG⊗M . kG has a bilinear form

⎛
⎝∑g∈G

ageg,∑
g∈G

bgeg
⎞
⎠

:= 1

∣G∣ ∑g∈G
agbg−1

Theorem 4 (Orthogonality relations for matrix elements). Suppose that (V1, ρ1)
and (V2, ρ2) are irreducible representations of a group G. Fix a basis {ei}i=1,...,n of
V1 and {fi}i=1,...,m of V2. We have matrices (ρ1(g))i,j=,1...,n and (ρ2(g))i,j=,1...,m
representing group elements. Fix i, j between 1 and n and k, l between 1 and m.

We have E
(1)
ij ,E

(2)
kl ∈ kG with (where E

(1)
ij (g) are the matrix elements of ρ1(g) with

respect to the basis {e} and vice versa E
(2)
kl and ρ2(g) and {f})

E
(1)
ij (g) := ∑

g∈G

ρ1(g)ijeg

E
(2)
kl (g) := ∑

g∈G

ρ2(g)kleg

Then

(1) (E(1)ij ,E
(2)
kl ) = 0 if V1 ≠ V2

(2) (E(1)ij ,E
(1)
kl ) = δjkδil

dimV1
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We will proove the theorem stated at the end of the last class.
We want

1

∣G∣ ∑g∈G
E
(1)
ij (g)E(2)kl (g−1) = 0(7.1)

1

∣G∣ ∑g∈G
E
(1)
ij (g)E(1)kl (g−1) =

δjkδil

dimV1
=
⎧⎪⎪⎨⎪⎪⎩

1/dimV1 i = l, j = k
0 otherwise

(7.2)

Proof. We want to proove the above identities for all i, j < n and k, l < m.
Let us take the operator T0∶V1 → V2 with T0(ei) = fl and T0(ep) = 0 for p ≠ i.

14



Lecture 7

We want to average over the elements so that the group action commutes, like an
intertwining operator.

De�ne an operator T by

T = 1

∣G∣ ∑g∈G
ρ2(g)−1T0ρ1(g)

Recall, that this averaging operation has the following e�ect: the operator T now
satis�es

ρ2(g)T = Tρ1(g) for all g ∈ G
So T is an intertwining operator. Since V1 and V2 are non-isomorphic, by Schur's
lemma, the operator must be zero. So now, let us write down this condition and
try to extract some information from it. If this operator is written as a sum of
basis elements then we get the zero matrix so we will have a lot of conditions. So
we should apply T to a basis vector. Let's consider

ρ1(g)(ej) =
n

∑
k=1

ρ1(g)kjek

⇒ T0ρ1(g)(ej) = ρ1(g)ijfl
because it is only non-zero on ei from above. Now we apply the inverse

ρ2(g)−1T0ρ1(g)(ej) = ρ2(g−1)(ρ1(g)ijfl)

= ρ1(g)ij
m

∑
k=1

ρ2(g−1)klfk

We considered the term ρ2(g)−1T0ρ1(g)(ej). Now we write, using the above

T (ej) =
1

∣G∣ ∑g∈G

m

∑
k=1

E
(1)
ij (g)E(2)kl (g−1)fk

This is a linear combination of fk, so if it is equal to zero, then every coe�cient must
be zero. This gives us precisely the relations (7.1). We can get the second identity
by adapting the above argument. First of all take T0(ei) = el and T0(ep) = 0 for
p ≠ i and

T = 1

∣G∣ ∑g∈G
ρ1(g)−1T0ρ1(g)

Our conclusion using Schur's lemma is not true now - we cannot conclude that it
is zero. Instead it acts like a scalar. We need to see what kind of scalar we get,
consider4

tr(T ) = 1

∣G∣ ∑g∈G
tr(ρ1(g−1)T0ρ1(g))

= 1

∣G∣
∣G∣ ⋅ tr(T0) = δil

Which is clear from the de�nition of T0 given above. If T is a scalar λ then
tr(T ) = λ ⋅ dimV2 so we have

λ = δil
dimV1

Similar to the above we have

ρ1(g)−1T0ρ1(g)(ej) = ρ1(g−1)(ρ1(g)ijfl)

= ρ1(g)ij
m

∑
k=1

ρ1(g−1)klfk

4Use the cycle property of traces here tr(abc) = tr(bca).

15
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and eventually

T (ej) =
1

∣G∣ ∑g∈G

m

∑
k=1

E
(1)
ij (g)E(1)kl (g−1)ek

= λej =
δil

dimV1
ej

which is actually equivalent to (7.2). �

Now we have one of the main de�nitions needed for the classi�cation of irre-
ducible representations of �nite groups. In the next class we will discuss applica-
tions.

7.1. Characters.

De�nition 7. For a representation (V, ρ) of G, we de�ne the character χV as the
function from G to the complex numbers χV ∶G→ C given by

χV (g) = trV (ρ(g))

It is clear this does not depend on choice of basis, and only depends on the
isomorphism classes of representations. Two basic properties that we will state
before the class ends

(1) χV1 = χV2 if V1 ≃ V2 which is obvious.

(2) χ(g−1) = χ(g) for all g ∈ G.
Previously, we had the alternate proof of the decomposition into irreducibles

which only worked for real or complex numbers, and we showed that there always
exists an invariant Hermitian scalar product. The idea is that: if v is an eigenvector
of ρ(g), then

λ(v, v) = (ρ(g)(v), v) = (ρ(g)(v), ρ(g)ρ(g−1)(v)) = (v, ρ(g−1)(v))
= (v, λ−1v)

= λ−1(v, v)

So λ = (λ−1). So χ(g−1) = χ(g).

Lecture 8
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8.1. Orthogonality relations. The last thing was about characters: for ev-

ery representation we have χV (g−1) = χV (g). There is another reason why this
should hold. Basically if you take the matrix ρ(g), then because of one of the basic
results of group theory, that is if you raise it to the power of the order of the group
ρ(g)∣G∣, then

ρ(g)∣G∣ = ρ(g∣G∣) = ρ(1) = Id

The conclusion is that for every element of a �nite group, some power of the repre-
sentative matrix is the identity, thus every representative matrix is diagonalisable.
This can be seen by taking powers of the Jordan normal form - we can't have

16
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elements outside of the main diagonal otherwise. We have

ρ(g) is represented by

⎛
⎜⎜⎜⎜
⎝

χ1 0 . . . 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 . . . 0 χn

⎞
⎟⎟⎟⎟
⎠

relative to some basis

ρ(g−1) is represented by

⎛
⎜⎜⎜⎜
⎝

χ−1
1 0 . . . 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 . . . 0 χ−1

n

⎞
⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜
⎝

χ1 0 . . . 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 . . . 0 χn

⎞
⎟⎟⎟⎟
⎠

and the roots of unity all belong to the unit circle5 ∣z∣ = 1⇔ zz̄ = 1⇔ z̄ = z−1. In
particular we have

1

∣G∣ ∑g∈G
χV1(g)χV2(g−1) = 1

∣G∣ ∑g∈G
χV1(g)χV2(g)

Since we have

χV1
(g) =

dimV1

∑
i=1

E
(1)
ii (g)

χV2(g) =
dimV2

∑
j=1

E
(2)
jj (g)

so we conclude that

1

∣G∣ ∑g∈G
χV1(g)χV2(g−1) = 0 if V1 is not isomorphic to V2 (V1, V2 irreducible)

1

∣G∣ ∑g∈G
χV1(g)χV1(g−1) = 1 for an irreducible representation V1

The �rst statement is easy because of orthogonality for matrix elements. The
second:

1

∣G∣ ∑g∈G
χV1(g)χV1(g−1) = 1

∣G∣ ∑g∈G
∑
j,k

Ejj(g)Ekk(g−1) (j = 1 . . .dimV1, k = 1 . . .dimV1)

= 1

dimV1
⋅ dimV1 = 1

De�ne for ϕ,ψ∶G→ C the following

(ϕ,ψ) = 1

∣G∣ ∑g∈G
ϕ(g)ψ(g)

Then if V1, V2 are irreducible representations, we have

(χV1 , χV2) =
⎧⎪⎪⎨⎪⎪⎩

1, V1 ≃ V2

0, V1 /≃ V2

Clearly, if V ≃ V1 ⊕ V1 ⊕ ⋅ ⋅ ⋅ ⊕ V1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a1

⊕V2 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ V2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

a2

⊕ ⋅ ⋅ ⋅ ⊕ Vn ⊕ Vn ⊕ ⋅ ⋅ ⋅ ⊕ Vn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

an

where

we assume that the Vi are pairwise non-isomorphic irreducible representations, then
we have

χV = a1χ1 + ⋅ ⋅ ⋅ + anχn

5Since the group has �nite order, the eigenvalues must have �nite order, so they must be
roots of unity etc.
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Lecture 9

and (χV , χVi) = ai. Furthermore, let us consider the representation (V = CG,ρl)
(the left regular representation) and also W some irreducible representation. We
will compute

(χCG, χW )
The character of the left-regular representation is very easy to compute:

ρl(g)eh = egh
If g ≠ 1, all diagonal entries of ρr(g) are zero6, so χCG(g) = 0. The case of the
identity element is easy since it goes to the identity matrix, so the value is just
χCG(1) = ∣G∣.

(χCG, χW ) = 1

∣G∣ ∑g∈G
χCGχW (g)

= 1

∣G∣
χCG(1)χW (1) = dimW

So we have proven something rather important here.

Theorem 5. The decomposition of the left regular representation into a sum of
irreducibles contains a copy of every irreducible representation with multiplicity
equal to the dimension.

This is a very powerful result, because up to now we had no reason to assume
there were even �nitely many non-isomorphic representations. Let us look at an
example: take G = S3, we have ∣G∣ = 6. Our theorem tells us there are no irreducible
representations of dimension three - if there were then we would have three copies
of a three dimensional space inside a six dimensional space. If G has two non-
isomorphic two-dimensional irreducible representation say U1, U2, then CG contains
U1 ⊕U1 ⊕U2 ⊕U2 so dim ≥ 8 a contradiction.

We know one two-dimensional representation U , so CG ≃ U ⊕U ⊕V1 ⊕ ⋅ ⋅ ⋅ ⊕ Vm
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
1d. irreducible

and 6 = 2 + 2 +m so m = 2, that is, there are two non-isomorphic irreducibles. The
trivial representation is an example of a one-dimensional representation. Another is
the sign representation - even permutations are mapped to 1 and odd permutations
are mapped to -1 i.e. ρ(σ) = sgn(σ). Then our claim is that these are all the
irreducible representations of S3 and hence we have classi�ed all representations of
S3.

In conclusion, S3 has three irreducible representations (up to isomorphism): the
trivial representation, the sign representation and the representation by symmetries
of a triangle.

In principle, the above theorem is enough to determine all irreducible represen-
tations, but we would prefer to have some more results.

One simple observation is that characters are invariant under conjugation

χV (ghg−1) = χV (h) g, h ∈ G
This is simple because

trV (ρ(ghg−1)) = trV (ρ(g)ρ(h)ρ(g)−1)
= trV (ρ(h)) = χV

In fact this gives us an upper bound on the number of irreducible representations:
it is bounded by the number of conjugacy classes. We will proove this next time
and show that this bound is sharp.

6It is clear from the way that ρl(g) acts that the diagonal entries are either 1 or 0. If it was
1 then there would be some ek that would get mapped to ek, which is only possible if g = 1.
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Lecture 9
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9.1. The number of irreducible representations. Last time we discussed
some things about characters of representations.

Theorem 6. The number of non-isomorphic irreducible representations of a �nite
group G over C is equal to the number of conjugacy classes of G.

Proof. For any character χV of a representation V we have

χV (ghg−1) = χV (h)(9.3)

Functions that satisfy equation (9.3) are called class functions. We shall proove
that characters of irreducibles form a basis in the space of class functions. Since the
dimension of the space of class functions is clearly equal to the number of conjugacy
classes, this will complete the proof. We have

χV (ghg−1) = trV (ρ(ghg−1)) = trV (ρ(g)ρ(h)ρ(g)−1) = trV (ρ(h)) = χV (h)
It is harder to proove the part about bases. We will need to use the following lemma

Lemma 7. Let (V, ρ) be a representation of G, ϕ ∶ G→ C be a class function, then

Tϕ,ρ = ∑
g∈G

ϕ(g)ρ(g)

is an intertwining operator.

Proof.

ρ(h)Tϕ,ρρ(h)−1 = ∑
g∈G

ρ(h)ϕ(g)ρ(g)ρ(h)−1

= ∑
g∈G

ϕ(g)ρ(hgh−1)

= ∑
g∈G

ϕ(hgh−1)ρ(hgh−1)

= ∑
g′∈G

ϕ(g′)ρ(g′) = Tϕ,ρ �

In particular, if V is irreducible, then by Schur's lemma, this operator Tϕ,ρ is
a scalar λ so

dimV ⋅ λ = tr(Tϕ,ρ)
= ∑
g∈G

ϕ(g)trρ(g) = ∑
g∈G

ϕ(g)χV (g)

= ∣G∣ ⋅ (ϕ, χ̄V )

⇒ λ = ∣G∣
dimV

(ϕ, χ̄V )

Now, suppose that characters of irreducibles do not span the space of class
functions. Then their complex conjugates do not span the space either. Therefore
there exists a non-zero class function orthogonal to all χ̄V for irreducible V with
respect to ( , ). Denote it by ψ. We have Tψ,ρ = 0 for irreducible representations
(V, ρ). Because of our formula for Tϕ,ρ it follows that Tψ,ρ = 0 for all representations
(V, ρ).

Our objective is to show Tψ,ρ is zero to get a contradiction. Let us consider
(CG,ρl), then

0 = Tψ,ρl = ∑
g∈G

ψ(g)ρl(g)
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In particular we have

0 = Tψ,ρ(e1) = ∑
g∈G

ψ(g)ρl(g)(e1) = ∑
g∈G

ψ(g)eg

Therefore ψ = 0, because the eg are linearly independent. Since characters of
irreducibles are orthogonal they are linearly independent, therefore they form a
basis of the space of class functions. �

Let us now summarise our knowledge for the speci�c case of S3 which we
discussed on Monday. We know that it has three irreducible representations. So it
has three conjugacy classes: the three cycles, the two cycles (transpositions) and
the identity. So let us write down the character table for S3.

0 Id (12),(13),(23) (123),(132)
Trivial 1 1 1
Sign 1 -1 1
2d. U 2 07 2cos( 2π

3
) = −1

(χtriv, χsign) =
1

6
(1 ⋅ 1 + 3 ⋅ 1(−1) + 2 ⋅ 1 ⋅ 1)

The middle term above is

χtriv(12)χsign(12) + χtriv(13)χsign(13) + χtriv(23)χsign(12)

We also have

(χtriv, χU) = 1

6
(1 ⋅ 2 + 3 ⋅ 1 ⋅ 0 + 2 ⋅ 1 ⋅ (−1))

(these are weighted sums: the middle term is multiplied by three because there are
three terms in that conjugacy class etc.) and

(χU, χU) = 1

6
(2 ⋅ 2 + 3 ⋅ 0 ⋅ 0 + 2 ⋅ (−1) ⋅ (−1))

Lecture 10
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The goal today is to show how characters can also be used to decompose a given
representation into a direct sum of irreducible representations. We know this is
true in principle, but we do not have a direct method for doing this.

Aside: suppose that V,W are two representations of a �nite group G. As usual
all our representations are over C, unless stated otherwise. Then of course we know
that they can be decomposed into direct sums of irreducibles

V ≃ ⊕iV ⊕ai
i

W ≃ ⊕iV ⊕bi
i

This is sort of like decomposing integers into primes. {Vi} is a list of irreducible
representations of G. But we have not shown that these numbers ai, bi are well-
de�ned - that is, we have not shown that this decomposition is unique. The analogy
is like the fundamental theorem of arithmetic, that decomposition into a prime
factorisation is unique. To proove this, we use the orthogonality of characters

(χV , χVi) = ai
(χVi , χVj) = δij (orthogonality)
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More generally, if we compute the scalar product of V,W

(χV , χW ) = ∑
i

aibi

Our criterion for irreducibility is

V is irreducible⇔ (χV , χV ) = 1

Proof. We have V ≃ ⊕V ⊕ai
i then (χV , χV ) = ∑i a2

i . �

Now, given some arbitrary representation, it is di�cult to determine whether
a representation is irreducible by hand. But the above criterion makes it very easy.
This alone might be enough to highlight the importance of characters.

It is possible to view the above formulas in a more conceptual way. We note
that the characters are integers. There is a philosophy in mathematics called cate-
gori�cation: when we have integers and there's no particular reason to assume that
they should all be integers, then we can interpret these integers as dimensions.

Theorem 8. If V ≃ ⊕V ⊕ai
i and W ≃ ⊕V ⊕bi

i then

(χV , χW ) = ∑
i

aibi

= dim HomG(V,W )

where HomG(V,W ) is the space of intertwining operators between V and W .

Remark. This can be interpreted as an alternative way to view Schur's lemma.

Proof. Linear operators between V and W are block N ×N matrices

A =

⎛
⎜⎜⎜⎜
⎝

Aij

⎞
⎟⎟⎟⎟
⎠

and Aij is itself a block matrix

Aij =

⎛
⎜⎜⎜⎜
⎝

T ijpq

⎞
⎟⎟⎟⎟
⎠

(where T ijpq is a matrix of a linear operator from the pth copy of Vi to the qth copy
of Vj) and of course group elements g ∈ G acting on V,W are represented by block
diagonal matrices. The intertwining condition is

ρW (g)A = AρV (g) for all g ∈ G
Recall that the multiplication rules for block matrices imply that all Tpq are inter-
twining operators i� A represents an intertwining operator.

(Here is an example to illustrate this

(r1 0
0 r2

)(a b
c d

) = (r1a r2b
r1c r2d

)

(a b
c d

)(s1 0
0 s2

) = (as1 bs2

cs1 ds2
)

and we equate these.)
Therefore A represents an intertwining operator(s) i� T ijpq = 0 for i ≠ j and T ijpq is

a scalar whenever i = j by Schur's lemma. Aii depends on ai×bi parameters (because
p, q range over ai, bi values respectively), so dim HomG(V,W ) = ∑i aibi. �
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Let us now describe how to decompose a representation into invariant subspaces
using characters in a canonical fashion.

10.1. Canonical decomposition of a representation. Suppose V ≃ U ⊕U
where U is irreducible. We can say that the �rst factor contains all vectors of the
form (u,0) and the second, all vectors (0, u). Alternatively we can take U1 = {(u,0)}
and U2 = {(u,u)}. These obviously have zero intersection, so U1, U2 are invariant, so
V = U1⊕U2. So in general the direct sum decomposition cannot be unique. However,
what is true is that if we �x some irreducible representation and take the direct
sum of all invariant subspaces isomorphic to that space, then the decomposition
will be well-de�ned. That is, if V ≃ ⊕iV ⊕ai

i then for each i, V ⊕ai
i is a well-de�ned

subspace, i.e. it does not depend on the choice of decomposition of V . What we
shall proove in the next class is the following

Theorem 9. Let us de�ne (for V a representation of G)

pi =
dimVi
∣G∣

⋅ ∑
g∈G

χVi(g)ρV (g)

then p2
i = pi, pi ∈ HomG(V,V ) and Im pi = V ⊕ai

i
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We will proove the theorem from the last class.

Proof. First of all, let us proove that pi ∈ HomG(V,V ) i.e. that pi is an
intertwining operator. For χi (χi ∶= χVi) then

Tχi,ρV = ∑
g∈G

χi(g)ρV (g)(11.4)

is an intertwining operator, which we prooved last week. If V is an irreducible
representation, then

Tχi,ρV = ∣G∣
dimV

(χVi , χV )

So, it is equal to zero if Vi /≃ V and equal to ∣G∣/dimV if V ≃ Vi, under the
assumption of irreducibility, but of course in general then (11.4) tells us that Tχi,ρV
is equal to ∣G∣/dimVi on each constituent Vi and equal to zero otherwise. Then

pi =
dimVi
∣G∣

Tχi,ρV

is equal to 1 on each irreducible constituent isomorphic to Vi, and to zero on all
constituent Vj for j ≠ i. Now parts (1) to (3) follow. �

In particular, from this formula, we can extract a sum of all the copies of the
trivial representation. If we consider the operator

p = 1

∣G∣ ∑g∈G
ρV (g)

is the projector on the subspace of invariant vectors in V (ρV (g)v = v).
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11.1. Further decomposition into irreducibles. Our set-up is that V =
⊕iV (i) with V (i) ≃ V ⊕ai

i . So V (i) = Im pi constructed in the previous theorem.
Now let us assume that we �know� irreducibles Vi such that we know the matrices

ρi(g) = (E(i)kl (g)) where k, l = 1, . . . , ni where ni = dimVi. Now �x one of the i and
de�ne the operators

P
(i)
kl = dimVi

∣G∣ ∑
g∈G

E
(i)
lk (g−1)ρV (g)

(note the form of the matrix element in the sum - it is the transpose inverse)

Theorem 10. (1) P
(i)
kk are projectors, (P (i)kk )2 = P (i)kk (but not intertwining

operators). The subspaces V (i,k) := Im P
(i)
kk ⊂ V (i) for k = 1, . . . , ni and

V (i) = ⊕mjk=1V
(i,k) (but not invariant).

(2) P
(i)
kl is zero on V (j), for j ≠ i and Im P

(i)
kl ∣V (i,l) ⊂ V (i,k) and P

(i)
kl ∶V

(i,l) →
V (i,k) is an isomorphism of vector spaces.

(3) Take x1 ≠ 0 ∈ V (i,1) and let xk = P
(i)
k1 (x1) ∈ V (q,k). Then V (x1) =

span(x1, . . . , xn)is an invariant subspace where the representation V1 is

realised. Finally, if x11, x12, . . . , x1m is a basis of V (i,1), then

V (i) = V (x11) ⊕ V (x12) ⊕ ⋅ ⋅ ⋅ ⊕ V (x1m)

is a decomposition of V (1) into a direct sum of irreducibles.

Remark. The �nal statement says that �nding irreducible subspaces is �as easy�
as �nding bases.

Proof. First of all, P
(i)
kl is de�ned for any V , and to compute them, we shall

�rst consider an irreducible V , and then we use �linearity in V �. Suppose V is
irreducible, and let f1, . . . , fr be a basis of V and suppose that ρV (g) = (Epq(g))
with respect to {fj}, then

P
(i)
kl (fs) =

dimVi
∣G∣ ∑

g∈G

E
(i)
lk (g−1)ρV (g)(fs)

= dimVi
∣G∣ ∑

g∈G

∑
t

E
(i)
lk (g−1)Ets(g)ft

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if V /≃ Vi
fk if l = s and V ≃ Vi
0 if l ≠ s and V ≃ Vi

�
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First, we will �nish that disastrously technical result we started last time. Recall
we were considering the operators

P
(i)
kl = dimV1

∣G∣ ∑
g∈G

E
(i)
lk (g−1)ρ(g)

Now, assume that V is irreducible and let f1, . . . , fk be a basis then

P
(i)
kl (fr) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 V /≃ Vi
fk V ≃ Vi and l = r
0 V ≃ Vi and l ≠ r
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Since for a general V , ρV (g) are represented by block-diagonal matrices, P
(i)
kl

are also represented by block-diagonal matrices.

P
(i)
kl P

(j)
st =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 i ≠ j
P
(i)
kt i = j, l = s

0 i = j, l ≠ s

In particular (P (i)kk )2 = P (i)kk . We have the following

ρV (g)P (i)kl = ∑
m

E
(i)
mk(g)P

(i)
ml

To show it, we show that it is true on basis elements from copies of Vj , j ≠ i we
obtain 0 = 0. If fr is a basis element of a copy of Vi then

ρV (G)P (i)kl (fr) = δlrρV (g)(fk)

= ∑
m

E
(i)
mk(g)P

(i)
ml (fr)

= δlr∑
m

E
(i)
mk(g)fm

If we de�ne V (i,k) = Im P
(i)
kk then we have V (i,k) ⊂ V (i) because we have shown

that Pkk project onto the component part of Vi. Also we have V
(i) = ⊕kV (i,k) - the

sum is direct because we know that P
(i)
kk P

(i)
ll = 0 unless k = l and if v ∈ V (i,k)∩V (i,l)

then

v = P (i)kk (v1) = P (i)ll (v2)

and so

P
(i)
kk (v) = (P (i)kk )2(v1) = P (i)kk P

(i)
ll (v2)

so v = P (i)kk (v1) = (P (i)kk )2(v1) = 0.

We know that P
(i)
kl acts like zero on V (j) for j ≠ i as prooved. We want to show

that

P
(i)
kl ∶V

(i,l) → V (i,k)

is an isomorphism. Let v ∈ Im P
(i)
ll = V (i,l) so v = P (i)ll (v1). We have

w = P (i)kl (v) = P (i)kl P
(i)
ll (v1) = P (i)kl (v1)

and

P
(i)
kk (w) = P (i)kk P

(i)
kl (v2) = P (i)kl (v1) = w

which implies that w ∈ Im P
(i)
kk . Also the operator P

(i)
lk is an inverse V (i,k) → V (i,l).

Now, let x1 ≠ 0 ∈ V (i,1) and de�ne xk = P
(i)
k1 (x1) ∈ V (1,k). Then V (x1) =

span{x1} is an invariant subspace isomorphic to Vi. We have x1 = P (i)11 (x1). We
have

ρV (g)(xk) = ρV P (i)k1 (x1)

= ∑
m

E
(i)
mk(g)P

(i)
m1(x1) = ∑

m

E
(i)
mk(g)xm

and so both statements hold. The �nal result also follows from this, but we wont
show this because this proof is already too long.

Now let us move onto more useful and entertaining material.
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12.1. Tensor products. Let V,W be vector spaces then we can form the
tensor products V ⊗W . If A∶V → V and B∶W → W are linear operators then
det(A⊗B) = (detA)dimV ⋅(detB)dimW . If (V, ρV ) and (W,ρW ) are representations
of G, then (V ⊗W,ρV ⊗W ) is a representation which has

ρV ⊗W (g) := ρV (g) ⊗ ρW (g)
χV ⊗W (g) = χV (g)χW (g)

There is another construction: let (V, ρ) be a representation of G, then we have a
representation (V ∗, ρV ∗) - where V ∗ is the space of linear functionals on V - given
as

ρV ∗(g)(x) := x(ρV (g−1)(v)) x ∈ V ∗

Check that this is a representation and that the character of this representation
satis�es

χV ∗(g) = χV (g)

Lecture 13
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13.1. Interlude: �averaging� over n-gons. Monday is a bank-holiday so
the tutorial will be had at some other time. We will have the two classes that we
will miss on Monday in the �nal week of term.

We will defer until some other time the material mentioned at the end of class
last time. First, we will discuss the problem discussed in the �rst lecture about the
regular n-gon and the averaging process that happens. It can be approached in a
very elementary linear algebra method: we have an operator

T

⎛
⎜⎜⎜⎜
⎝

a1

a2

. . .
an

⎞
⎟⎟⎟⎟
⎠

→

⎛
⎜⎜⎜⎜
⎝

an+a2
2

a1+a3
2
. . .

an−1+a1
2

⎞
⎟⎟⎟⎟
⎠

This operator can be written as T = 1
2
(S + S−1) where S is a cyclic shift. If

ωk = exp(2πik/n) is an n-th root of unity, then

(1, ωk, ω2
k, . . . ,1)T

is an eigenvector of S with eigenvalue ωk. The same vector is an eigenvector of T
with eigenvalue

1

2
(ωk +

1

ωk
) = cos

2πk

n

If n is odd then only one of them survives, if n is even then there is �blinking� or
oscillations.

If we consider the same problem except for a dice: the linear algebra approach
is very di�cult since we need the characteristic equation of a 6×6 matrix. We need
to discuss the symmetries: it is a fact that the rotations of a cube are isomorphic
to S4: identify elements with the long diagonals of a cube. There are exactly 24
rotations
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1

43

2

● The trivial rotation.
● 6 elements corresponding to rotations through 180○ around the line con-
necting midpoints of opposite edges (correspond to transpositions).

● 6 elements corresponding to rotations through ±90○ around the line con-
necting centers of opposite faces (4 cycles).

● 3 elements corresponding to rotations through 180○ around the line con-
necting centers of opposite faces (pairs of diagonal transpositions).

● 8 elements for rotations through ±120○ around the long diagonals (corre-
spond to 3 cycles).

Having established this isomorphism, it naturally leads us to consider a 6-dimensional
representation of S4 in the space of functions on the sides of the cube. Let us com-
pute the character of this representation

e (12) (12)(34) (123) (1234)
6 08 2 0 2

We will now �gure out the multiplicities. Computing scalar products with
irreducible characters, we see that this representation is

V ⊗ sgn⊕U ⊕ triv

Now we view the sides as abstract elements of a set and consider functions on
the sides. The trivial representation corresponds to constant functions where all
numbers are equal. The V ⊗sgn corresponds to the case where numbers on opposite
sides add up to zero. The remaining one corresponds to: even functions: either zero
or integral numbers, where opposite sides are equal and all numbers add up to zero.

Now we want the eigenvalues. The triv case just gives us 1 since the averaging
process does nothing. The case of V ⊗ sgn gives zero because the �rst time we get

something like a+(−a)+b+(−b)
4

, so after the �rst iteration there is zero on every face.
In the case of U we have by the conditions 2a + 2b + 2c = 0 so a + b = −c, so take a

face with a on it then after an iteration we have −(a+b)−(a+b)+b+b
4

= −a
2
and similarly

for the other faces so we have −1/2, whence

(λ = 0) ⊕ (λ = −1

2
) ⊕ (λ = 1)

So if we apply our operator many times the �rst gives no contribution, the second
one tends to zero and only the �nal one survives.

An exercise is to do the same thing except for the case where the values appear
on the vertices of the cube, and averaging occurs with adjacent vertices.

Lecture 14
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Lecture 14

14.1. Faithful representations.

De�nition 8. Let G be a group and (V, ρ) a representation, then (V, ρ) is said to
be faithful if kerρ = {e}.

Remark. Note that this is equivalent to: ρ is a faithful representation i� ρ is an
embedding.

Theorem 11. Let (V, ρ) be a faithful complex representation of a �nite group G.
Then all irreducible representations of G appear as constituents of V ⊗n, n ≥ 1.

Before the proof, let us consider an example. Take G = S3 and the repre-
sentation is the irreducible two-dimensional representation U via symmetries of a
triangle. Recall for S3 we have

e (12) (123)
triv 1 1 1
sgn 1 -1 1
U 2 0 -1
U⊗n 2n 0 (−1)n

We obtain

(ξU⊗n , ξtriv) =
1

6
(2n + 2(−1)n)

(ξU⊗n , ξsgn) =
1

6
(2n + 2(−1)n)

(ξU⊗n , ξU) = 1

6
(2n+1 + 2(−1)n+1)

Proof. Suppose that some complex irreducible representation W does not
appear when we decompose V ⊗n, n ≥ 1 into irreducibles. First of all, let us choose
for both V and W , the Hermitian scalar products invariant under the action of
G. Let us pick both for V and for W an orthonormal basis with respect to the
corresponding Hermitian product. I claim that if we work relative to these bases,
then the matrix elements will have the property

Eij(g−1) = Eji(g)

This follows precisely from the fact that the product is invariant:

(ρ(g)ek, el) = (ek, ρ(g−1)el)

because we know that (ρ(g)v, ρ(g)w) = (v,w). Now orthogonality relations for
matrix elements look like

1

∣G∣ ∑
E
(1)
ij (g)E(2)kl (g) =

⎧⎪⎪⎨⎪⎪⎩

0 for non-isomorphic representations
1

dimV
δilδjk when the two representations coincide

the �rst case is relevant here because of the the hypothesis. The two E that appear
in the formula above are the matrix elements with respect to the bases which
are orthonormal for invariant Hermitian products. So under our assumption, the
matrix elements of our representation of W are orthogonal to all matrix elements
of all tensor powers of V .

Now, we would like to express the elements in terms of the tensor product.
If Eij(g) are matrix elements of (V, ρ) then what are the matrix elements of
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(V ⊗2, ρ⊗2)? Let A = (aij) relative to the basis e1, . . . , em and B = (bij) relative
to f1, . . . , fn then

(A⊗B)(ei ⊗ fj) = A(ei) ⊗B(fj) = (∑
k

(akiek) ⊗ (∑
l

bljfl))

= ∑
k,l

(akiblj)(ek ⊗ fl)

So if Eij(g) are the matrix elements of (V, ρ) then Eij(g)Ekl(g) are the matrix
elements of (V ⊗2, ρ⊗2), Eij(g)Ekl(g)Epq(g) are the matrix elements of (V ⊗3, ρ⊗3)
etc. By linearity, if

F (g) = P (E11(g),E12(g), . . . )
where P is a polynomial, then we have

∑
g∈G

F (g)EWij (g) = 0

where the EWij are the matrix elements of W . Up until now we have not used the

fact that the representation is faithful. Now, we work in C∣G∣ (with the standard

Hermitian scalar product on C∣G∣) and identify F with its vector of values

F ←→ (F (e), . . . , F (g), . . . )

and similarly

EWij ←→ (EWij (e), . . . ,EWij (g), . . . )
The collection of matrix elements of V , viewed as functions on G, distinguishes
elements from one another. As a consequence, every function on a group is a
polynomial in those. This is analogous to Lagrange interpolation if we were to
consider some �nite subset on Rn or a very particular case of the Stone-Weierstraÿ
theorem. Hence all matrix elements of W are polynomials in matrix elements of V ,
hence self-orthogonal which implies

EWij (g) = 0

for all i, j which is a contradiction, a scalar product is positive-de�nite. �

Lecture 15
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15.1. Set representations. Today the goal is to explain an important class
of representations of �nite groups which are usually called set representations or
permutation representations.

Let G be a �nite group and let M be a �nite set, and let an (left) action of G
be given on M . A group action gives rise to a representation of the set: if F is a
�eld, we can construct a representation on a vector space denoted FM where the
basis elements are indexed by elements of M i.e.

FM = {∑ cmem ∣ cm ∈ F, m ∈M}

where FM has a basis em for m ∈ M . The action is given by ρ(g)em = eg⋅m, then
we extend on all FM by linearity, and thus obtain a representation of G. Note that
some of the representations that we have already discussed are examples of this
sort of representation.

Examples:

(1) G a group, M = ∅ results in FM being the trivial representation.
(2) G a group, M = G, action by left multiplication g ⋅ h := gh results in FM

being the left regular representation.
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(3) G = Sn and M = {1,2, . . . , n} and the action is just the usual permutation
action, then FM = Fn is the representation by permuting the standard
unit vectors in Fn.

A set representation has the following features

(1) It contains a one-dimensional invariant subspace where the trivial repre-
sentation is realised (c ⋅ ∑m∈M em).

(2) The value of the character of FM on g ∈ G is equal to the number of �xed
points of g on M (all diagonal entries of ρ(g) are zeroes and ones.)

Theorem 12. Let M,N be two sets where G acts, then

HomG(FM,FN) ≃ F ⋅ (M ×N)/G as vector spaces

Proof. Take α ∈ Hom(FM,FN). Let α be represented by a matrix (amn)
with

α(em) = ∑
n∈N

anmen

Now we want to look at the intertwining operators: recall

α is an intertwining operator ⇔ (ρN(g)α = αρM(g))

so we have

ρN(g)α(em) = αρM(g)(em)
Then the left-hand side is

ρN(g)∑
n

anmen = ∑
n

anmeg⋅n

and the right-hand side

α(eg⋅m) = ∑
n

ang⋅men

so the condition for it to be an intertwining operator is

∑
n

anmeg⋅n = ∑
n

ang⋅men

= ∑
k

ag⋅k g⋅meg⋅k

so we have anm = ag⋅ng⋅m for all m,n, g, i.e. it is constant on each orbit. �

So what are some consequences of this result

(1) Let M be any set with a G-action and N = {∗} then we have

dim HomG(FM,FN) = ∣M/G∣

which has the following informal explanation: FM has a copy of the trivial
representation for each orbit of G.

(2) Let G = Sn and M = {1,2, . . . , n} and N = P2M (all two element subsets
of M). We have ∣M ∣ = n and ∣N ∣ = (n

2
), and

dim HomSn(FM,FM) = ∣(M ×M)/Sn∣ = 2

because the orbits on pairs are {(k, k)} and {(p, q), p ≠ q}. In the case

dim HomSn(FM,FN) = ∣(M ×N)/Sn∣ = 2

because elements areM×N = {(k,{p, q})} and the orbits are {(k,{p, q}), k ∈
{p, q}} and {(k,{p, q}), k ∉ {p, q}} and �nally

dim HomSn(FN,FN) = 3 (n ≥ 4)
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because the 2-element subsets can coincide, can overlap by one or be
disjoint. We have

CM = triv ⊕ V
CN = triv ⊕ V ⊕W

Lecture 16
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16.1. Representations of Sn via set representations. Conjugacy classes
of Sn are in correspondence with partitions of n, λ1 ≥ λ2 ≥ ⋅ ⋅ ⋅ ≥ λk where λ1 + λ2 +
⋅ ⋅ ⋅ + λk = n. These partitions are usually represented by Young diagrams

where in the above diagram the row k (from the top)9 contains λk unit squares. λ,
a partition of n, corresponds to a set Mλ on which Sn acts. Mλ is the set of Young
diagrams with the underlying diagram λ. A Young tableau is a numbering of
unit squares of λ by 1, . . . , n up to row permutations.

An example: take n = 3 then we have things like 1 2 3 , 1 3 2 , 2 3 1 , . . . but these
are all the same by our conventions, so there is just one distinct Young tableau of

this type. We have three distinct tableaux of the following type
1 2
3 ,

1 3
2 and

2 3
1

and there are six distinct tableaux of the following type:

1
2
3 ,

1
3
2 ,

2
1
3 ,

2
3
1 ,

3
1
2 ,

3
2
1

The �rst type just corresponds to the trivial representation. The second group
of three Young tableaux corresponds to C3 ≃ triv⊕U and the �nal one corresponds
to the left-regular representation which is triv ⊕U ⊕U ⊕ sgn.

Lemma 13. Let λ = (λ1 ≥ ⋅ ⋅ ⋅ ≥ λk), µ = (µ1 ≥ ⋅ ⋅ ⋅ ≥ µl) both be partitions of n then

χCMλ
(µ) = coe�cient of xλ1

1 . . . xλkk in
l

∏
i=1

(xµi1 + xµi2 + ⋅ ⋅ ⋅ + xµik )

Proof. The number of �xed products of a representation of type µ is equal to
the number of ways to assign to cycles in µ the rows within which those cycles per-
mute elements. These ways naturally correspond to choices of x

µj
i in each bracket

that altogether assemble into our monomial. �

Here are some characters for various set representations of S4.

9This is the English notation; the French notation is this inverted i.e. go bottom-up rather
than top-down.
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e (12) (12)(34) (123) (1234) Decomposition
M4 1 1 1 1 1 triv
M3,1 4 2 0 1 0 triv ⊕ V
M2,2 6 2 2 0 0 triv ⊕U ⊕ V
M2,1,1 12 2 0 0 0 triv ⊕U ⊕ V ⊕ V ⊕ V ′

M1,1,1,1 24 0 0 0 0 all irrep.'s with multiplicity

Heuristically: the idea that can be seen from the table above is that when
we move from each set representation down to the next, then if we �chop o�� the
previous representation (including multiplicities) then we get a new representation.

An example of the calculation of the result from the theorem: take λ = µ = (2,2)
then we have

(x2
1 + x2

2)(x2
1 + x2

2) = x4
1 + 2x2

1x
2
2

²
λ

+x4
2

Now, let us list some features of this construction

(1) For each partition λ, there is an irreducible Vλ which appears in CMλ

with multiplicity 1 and does not appear in �smaller� CMλ′ . What do we
mean by smaller? We say that λ1 ≥ ⋅ ⋅ ⋅ ≥ λk is bigger than λ′1 ≥ ⋅ ⋅ ⋅ ≥ λ′l if

λ1 ≤ λ′1
λ1 + λ2 ≤ λ′1 + λ2

λ1 + λ2 + λ3 ≤ λ′1 + λ′2 + λ′3
⋮

This is the most important property of set representations and it is how one studies
representations of the symmetric group in general.

Next class will be a tutorial.

Lecture 17
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17.1. Construction of the irreducible representations of Sn over a

�eld of characteristic zero. There are also Young tabloids, which are Young

tableaux up to row permutations e.g.
1 2
3 =

2 1
3 as Young tabloids but not Young

tableaux. For λ a Young diagram then we denote Tλ the set of all Young tableaux
of shape λ and by Mλ the set of all Young tabloids of shape λ. Both Tλ and Mλ

have an action of Sn on them.
CTλ is isomorphic to the left regular representation10. There is a natural map

CTλ → CMλ that sends a tableau to its equivalence class of tabloids. For each
Young tableau t of shape λ, let us de�ne an element vt ⊂ CTλ as follows

vt = ∑
σ∈ct

sign(σ) ⋅ eσ(t)

where ct is the set of elements of Sn permuting elements inside the columns in the
Young tableau t, for instance say that your Young tableau was a horizontal strip
then the subgroup would be trivial.

Here are some facts, some of which are easy to show, others require some hard
work

(1) span(vt)
t∶ tableau
of shape λ

⊂ CTλ is an invariant subspace for the Sn-action.

(2) The image of span(vt) in CMλ is an irreducible representation Vλ of Sn.

10As far as I can see, this is only true if we take λ = (n − 1,1). . .
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(3) Vλ are pairwise non-isomorphic for di�erent λ, and each irreducible rep-
resentation of Sn is isomorphic to one of them.

These describe in quite a nice constructive way the irreducible representations. The
proofs are in Fulton & Harris's textbook11.

Now, recall the stu� from the last homework about A5

● the conjugacy classes in S5 that are not odd are e,1
5,221,312,5. In A5, the

5-cycles split, we will denote them by 51 (corresponds to the one containing
(12345)) and 52 (containing (21345)). One way to obtain irreducible
representations is to try to restrict the representations of S5 to A5 and see
what happens. Recall from the tutorial the character table that we had
for S5 and restrict to A5

15 221 312 51 52

# 1 15 20 12 12
V5 1 1 1 1 1
V4,1 4 0 1 -1 -1
V3,2 5 1 -1 0 0
V3,1,1 6 -2 0 1 1

By computing characters with themselves we can see that all of these are still
irreducible except for the last one where the product with itself is 2. V3,1,1 is more
di�cult to understand than the others, we will discuss them in the second lecture
today. In the last few minutes we will discuss a fact that we will need

Lemma 14. A5 is isomorphic to the group of all rotations of a dodecahedron.

Remark. Recall when we showed something similar for the cube we tried to �nd
four things where one of them was �xed under every action of the group. It is much
harder to see it in the case of the dodecahedron, but one can embed a compound
of �ve tetrahedra in it to group the points of faces into �ve groups. The images
below show the dodecahedron, the chiroicosahedron (compound of �ve tetrahedra)
and �nally the chiroicosahedron embedded in the dodecahedron.

Lecture 18
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18.1. Decomposing A5. Continuing about A5. We �gured out that all ex-
cept V3,1,1 are irreducible. We took the scalar product of this and got 2, so we
expect to obtain a direct sum of two irreducible representations.

Claim. V3,1,1 as a representation of A5 is isomorphic to the sum of two three
dimensional irreducibles.

11Lecture 3.
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Proof. Since A5 is a subgroup of S5 we can use some �external� information
to learn about the irreducibles here - act on it by transpositions from S5. If U is
an invariant subspace, where one of the irreducibles is realised, of V3,1,1, consider
ρ((12))U ⊂ V3,1,1. This subspace is also A5-invariant: if g ∈ A5,

ρ(g)ρ((12))U = ρ((12))ρ((12))−1ρ(g)ρ((12))U = ρ((12))ρ((12)−1g(12)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈A5

)U

= ρ((12))U

U ∪ ρ((12))U is an invariant subspace of U , so since U is irreducible it is either
zero or all of U . It cannot be the whole space because then we would have to
have ρ((12))U = U which would mean that U is invariant under the action of
transpositions, but then U would be invariant under the action of all of S5, i.e. it is
an S5-invariant which is a contradiction. Therefore we have proved that (because
then U and ρ((12))U are disjoint, so the sum is direct)

V3,1,1 ≃ U ⊕ ρ((12))U

(there is nothing else because (χ,χ) = 2) �

In fact we have prooved something more general here: if the restriction from
G to a subgroup H of index two of an irreducible representation is not irreducible,
then it is isomorphic to the sum of two irreducibles of the same dimension (we used
transpositions in the proof, but actually it does not matter).

Another consequence is

(18.5) χU1(g) = χU2((12)−1g(12))

because we can write ρ(g)ρ((12))U = ρ((12))ρ((12)−1g(12))U . This is sort of like
moving from one vector space to another vector space, akin to moving from A5 up
to S5. One should take some time to contemplate the above equation to try to
understand this subtlety here.

Now we try to �ll in the rest of the table started last time. For all conjugacy
classes of S5 that do not split in A5, this formula (18.5) means that χU1(g) = χU2(g).

15 221 312 51 52

# 1 15 20 12 12
V3,1,1 6 -2 0 1 1
U1 3 -1 0 a 1 − a
U2 3 -1 0 1 − a a

where the �rst instance of −1 are chosen because −1 − 1 = −2 which is the
character in the entry for V3,1,1 and so on. But we cannot do this with the 5-cycles.
So we use the fact that χU2(51) = χU2(52) since (12)−151(12) = 52. To determine
the value of a we use the fact that the inner product must be one, we obtain by
calculation

24a2 − 24a = 24⇒ a2 − a + 1⇒ a = 1 ±
√

5

2

and they ought to be di�erent - we need to be able to label the two irreducibles
after all, if they are distinct. So the �nal table is
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15 221 312 51 52

# 1 15 20 12 12
V3,1,1 6 -2 0 1 1

U1 3 -1 0 1+
√

5
2

1−
√

5
2

U2 3 -1 0 1−
√

5
2

1+
√

5
2

Now we would like to be able to look at what these irreducibles U1, U2 actually
are, we will use the dodecahedron to do this. The conjugacy classes in the group
of rotations of the dodecahedron are

● e
● rotations about the axis through opposite vertices, ±120○ which corre-
spond to three cycles.

● rotations about the axis the line connecting midpoints of opposite edges
through 180○ which corresponds to the product of disjoint two-cycles.

● rotations about the edges connecting the centres of opposite faces, through
the angles ±72○ and through ±144○, where 51 corresponds to ±72○ and the
other to 52.

For the rotation through 72○, the character of the three-dimensional represen-
tation is 1 + 2 cos 72○. To �nish this lecture lets do some elementary geometry that
you might have seen in high-school

36○

36○

36○ 72○

1 1

2cos72○

2cos 72○

2cos 72○ × 2cos 72○

This small geometric argument tells us that

2 cos 72○ + 4(cos 72○)2 = 1

which tells us that 2 cos 72○ = −1+
√

5
2

so 1+2 cos 72○ = 1+
√

5
2

so we see this corresponds
with the table entries from earlier.
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19.1. Dedekind-Frobenius determinants. The goal today is to see some
applications of representations to group theory. This will also cover group algebras
which I mentioned before. To make the transition we will �rst discuss again that
problem from the �rst lecture about the Dedekind-Frobenius determinants.

Let G be a group, and introduce formal indeterminates xg indexed by elements
g ∈ G. First label the rows and columns of a matrix by elements g ∈ G so that the
entry in the matrix at position (g, h) is xgh. Next, we permute the columns of the
matrix so that the entry at that position is now xgh−1 . Let us take the underlying
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space CG of the left regular representation. Then this matrix is12

∑
g∈G

xgρ(g)

(relative to the basis {eg} of CG). Consider

∑
g∈G

xgρ(g)(eh) = ∑
g∈G

xgegh = ∑
g∈G

x(gh)h−1egh = ∑
g′∈G

xg′h−1eg′

so we precisely recover the columns of our matrix - �put the coordinates of the
images of the basis vectors in the columns of the matrix�. So our matrix has
this nice meaning in terms of the left-regular representation. When we decompose
CG into irreducibles, each one appears with multiplicity equal to its dimension.
Let us choose a basis of CG corresponding to such a decomposition. Each g ∈ G
will be represented by block matrices, each block being the matrix representing
g in the corresponding irreducible representation. Therefore ∑g∈G xgρ(g) is also
represented by a block diagonal matrix, and the determinant is equal to the product
of determinants of blocks, that is

s

∏
i=1

[det(∑
g∈G

xgρi(g))]
dimVi

where (Vi, ρi),i=1,...,s are the complex irreducible representations of G. In fact one
can reconstruct the Cayley table of a group if you have the above quantity.

Proposition 15. This factorisation is a factorisation into irreducibles.

We want to proove that det∑g∈G xgρi(g) is irreducible for each i = 1, . . . s. Let
ni = dimVi, we shall proove that there exists

xg = xg(a11, a12, . . . , aan, . . . , . . . , ann)
such that ∑g∈G xgρi(g) = (ajk)j,k=1,...,n. It would reduce prooving irreducibility to
proving irreducibility of

det

⎛
⎜⎜
⎝

a11 . . . a1ni

⋮ ⋮
ani1 . . . anini

⎞
⎟⎟
⎠

If det(apq) = F1F2 then F1 has degree 1 in a11 and F2 has degree 0 in a11 and if
F2 is not a constant polynomial then it is easy to see that it must vanish at some
point. (I didn't understand the rest of this argument /)
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20.1. The group algebra. We continue where we left o� last time. The re-
maining goal was to proove that there exists coe�cients αg = αg(aij) such that

∑g∈G αgρi(g) = (aij). We will discuss this in the context of a group algebra. Con-
sider FG and let us work over an arbitrary �eld F and take the underlying space of
the left regular representation. This space has a basis indexed by group elements
{eg}. Let us introduce a product on this space µ∶FG⊗ FG→ FG as follows

eg ⊗ eh ↦ egh

and once we know how to �nd products of basis elements, then we can �nd all
elements by linearity of course. So, of course this product is associative, so this
vector space FG becomes an associative algebra over the �eld F. Once you have

12Because of the way the left regular representation is de�ned ρ(g)eh = egh, the column of
the matrix of ρ(g) in the basis {ei} corresponding to h has zero everywhere except at the row
corresponding to gh, where it has a one.
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the notion of an associative algebra, a notion which is important is that of a module
over an associative algebra. Consider for instance left-modules over FG13. In some
sense if you know how to classify left-modules over an associative algebra then
you can answer any question in linear algebra. In particular, there is a one-to-one
correspondence between left FG-modules and representations (V, ρ) of G over the
�eld F. In particular, if M is our left-module and V is the vector space, with
matrices ρ(g) for g ∈ G then

α(∑ cgeg ⊗m) Ð→ V :=M, ρ(g)(m) = α(eg ⊗m)
Now, let C = F and let V1, . . . , Vs be irreducible representations of G. Then we have
an algebra homomorphism

CG→Matn1(C) ⊕ ⋅ ⋅ ⋅ ⊕Matns(C)
and this map takes

(20.6) eg ↦ (ρ1(g), ρ2(g), . . . , ρs(g))
my claim that I want to proove is

Claim. The map (20.6) is an isomorphism.

Proof. As vector spaces, these have the same dimension ∣G∣ = n2
1 + ⋅ ⋅ ⋅ +n2

s, so
it is enough to proove that this map is a surjection. Suppose that the image is a
proper subspace of

Matn1(C) ⊕ ⋅ ⋅ ⋅ ⊕Matns(C)
This means that there is a linear function on the above space that is identically
zero on the image of the map. Each linear function is

s

∑
p=1

np

∑
i,j=1

α
(p)
ij a

(p)
ij

where ((a(1)ij ), . . . , (a(s)ij )) is the element on which we compute the linear function.

There exists α
(p)
ij not all equal to zero such that

∑
p=1,...,s

i,j=1,...,np

α
(p)
ij E

(p)
ij (g) = 0

for all g ∈ G.14 Multiplying by E
(r)
kl (g−1) and summing over all g ∈ G we obtain

∑α
(p)
ij ∑

g∈G

E
(p)
ij (g)E(r)kl (g−1) = 0

Now recall our old identities, this vanishes almost everywhere. In particular, this

term ∑g∈GE
(p)
ij (g)E(r)kl (g−1) is equal to zero except for the case p = r, i = l, j = k,

so

α
(r)
lk

1

nr
= 0

13 Recall, if A is an associative algebra over F, then M is said to be a left A-module if

● M is a vector space over F.
● There is a map α∶A ⊗M → M i.e. there is an �action of A on M � - the following

diagram is commutative

A⊗A⊗M
idA⊗α //

µ⊗idM

��

A⊗M

α

��
A⊗M

α // M
For example, Matn(F) is an associative algebra and Fn is a module over Matn(F).

14Because it is zero on the image.
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so α
(r)
lk = 0. �

So the map

CG→Matn1(C) ⊕ ⋅ ⋅ ⋅ ⊕Matns(C)
is an isomorphism, and thus if we can consider an individual component map CG→
Matni(C) with eg ↦ ρi(g) surjective, and this is precisely what we need: this means
that the matrix is a combination of ρi(g), g ∈ G. This completes the proof of the
result that we started on Thursday. Also, it shows some of the uses that group
algebras have.
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21.1. Centre of the group algebra. Let us continue where we left o�. A
notion that arises when discussing associative algebras, is the centre

De�nition 9. If A is an associative algebra (over a �eld F), then its centre Z(A)
is the sub-algebra

{z∶ za = az, for all a ∈ A}

Let me start with an example, which is actually very important. Take A =
Matn(F), then15

Z(A) = {λ ⋅ Id, λ ∈ F}
Take the group algebra of a �nite group CG, which we already showed is iso-

morphic to

Matn1(C) ⊕ ⋅ ⋅ ⋅ ⊕Matns(C)
We have

Z(CG) ≃ Z(Matn1(C)) ⊕ ⋅ ⋅ ⋅ ⊕Z(Matns(C))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Cs

We want to compute it explicitly. We just need to look at the basis elements clearly

(∑
g∈G

cgeg)eh = eh(∑
g∈G

cgeg) for all h ∈ G

then we have ∑g∈G cgegh = ∑g∈G cgehg = ∑g′∈G ch−1g′heg′h so we see that in order
for our elements to be central, we should have cg = ch−1gh for all h. This compu-
tation shows that the constants are the same on the conjugacy classes. Thus the
dimension of the centraliser is equal to the number of conjugacy classes, and we
have already shown that Z(CG) is isomorphic to the number of distinct irreducible
representations' copies of C. More precisely, for each conjugacy class C of G, the
element EC = ∑g∈C eg is in Z(CG) and these elements form a basis of the centre of
the group algebra. So, now we want to discuss some consequences of this result

● For each conjugacy classC of G, EC acts by a scalar (by Schur's lemma) in
every irreducible representation of G. For each irreducible representation,
this scalar λi,C is an algebraic integer (we shall proove this second fact
later).

15Denote Ei,j = {(ejk)∶ eij = 1, 0 otherwise} then for C ∈ Z(A), CEi,i is the matrix with
the ith column of C and zero elsewhere and Ei,iC is the matrix with the ith row of C and zero
elsewhere, so C is diagonal. Also C(Ei,j + Ej,i) is the matrix with columns i and j swapped
and zero elsewhere, and compare with the same except by left multiplication of C, and the result
follows.
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● We have

tr(ρi(EC)) = ∑
g∈C

trρi(g) = ∣C∣ ⋅ χi(C)

tr(ρi(EC)) = niλi,C

⇒ λi,C = ∣C∣ ⋅ χi(C)
ni

Let me use this result to proove the following

Lemma 16. Suppose that gcd(∣C∣, ni) = 1, then either χi(C) = 0 or ρi(g)
for g ∈C are all scalar multiples of the identity.

Proof. If gcd(∣C∣, ni) = 1 then there are integers a, b so that a#C +
bn = 1. If λi,C is an algebraic integer so a ⋅ λi,C is an algebraic integer so

(1 − bni) ⋅ χi(C)
ni

is an algebraic integer so

χi(C)
ni

− χi(C)

is an algebraic integer so χi(C)/ni is an algebraic integer and

∣χi(C)
ni

∣ ≤ 1

by the triangle inequality, since the χi(C) are n roots of unity. If ∣χi(C)
ni

∣ =
1 then it's a scalar matrix (prooved in homework). If χi(C)

ni
< 1 then

consider the polynomial of smallest degree with integer coe�cients and

root χi(g)
ni

. Then all other roots are also averages of roots of unity, so of

absolute value ≤ 1. The constant term on the polynomial is the product
of all the roots, and is an integer, also it has absolute value strictly less
that one. The only possibility is that it is zero, as required. �

In the remaining minute and a half, I just want to remind you about two state-
ments from group theory, which will be needed on Thursday. The �rst statement
is that

A p-group has a non-trivial centre.

To recall why this is true, remember that g is in the centre ⇔ the conjugacy class
of g consists of g only. The second statement is

Sylow's theorem: if the number of elements in G is pmk and p
is prime, and k, p are coprime, then there is a subgroup of G of
order pm.
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Suppose that C is a conjugacy class of G, and g ∈ C then we know from last time
that

#C ⋅ χρi(g)
ni

is an algebraic integer, where (Vi, ρi) is irreducible, with dimVi = ni. If gcd(#C, ni) =
1 then χρi(g) = 0 or ρi(g) is a scalar matrix. We can use this result to proove the
following theorem
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Theorem 17. Suppose that for a conjugacy class C ≠ {e} of G, we have #C = pk,
where p is a prime, then G is not simple.

Proof. Suppose that G has a non-trivial normal subgroup and let g ≠ e be in
C. Then if we evaluate the character of the left-regular representation16

0 = χreg(g) =
s

∑
i=1

niχi(g) = 1 +
s

∑
i=2

niχi(g)

(where the 1 in the sum corresponds to the copy of the trivial representation that
you get). If ni is not divisible by p, then gcd(#C, ni) = 1, and therefore χi(g) = 0 or
ρi(g) is a scalar matrix. If G were simple then it cannot be a scalar matrix because
of the homework question: we know that if some elements of G are represented by
a scalar matrix on Vi, then all these elements form a normal subgroup in G. So we
must have χi(g) = 0. Therefore

0 = 1 +
s

∑
i=2

niχi(g) = 1 + ∑
ni such that

p∣ni

niχi(g)

which is equivalent to

∑
ni such that

p∣ni

ni
p
χi(g) = −

1

p

which is impossible because the left-hand side is an algebraic integer (with leading
coe�cient 1) and the right-hand side is a rational number that is not an integer. �

Remark. I will try to motivate the idea of a simple group. It is a natural question
to try to classify all �nite Abelian groups up-to isomorphism. This is too hard, so
we instead focus on the simple groups and then see how all the other �nite Abelian
groups can be constructed out of this - the simple groups form the �building blocks�
- recall that given a normal subgroup we can quotient it out and get a smaller group,
this is the point &c.

22.1. Burnside's paqb-theorem. Let us proove a simple consequence of the
previous theorem.

Theorem 18 (Burnside's paqb-theorem). Let p, q be prime numbers. Then a group
of order paqb is not simple.

Remark. This proof relies on two results that we mentioned at the end of the
last class: Sylow's theorem, and existence of a non-trivial centraliser of a p-group
(proof: Rose, thm 4.28)

Proof. Let G be a group of order paqb. Via Sylow's theorem: G has a sub-
group H of order qb, and via the other fact: H has a non-trivial centre. Let h be
in the centre of H, then Zh in G contains H. So, for Ch in G we have

#Ch =
#G

#Zh
= pk

because paqb = #G and Zh contains H so its order is divisible by qb. So the result
follows from the previous theorem. �

Burnside's theorem says that a group of order paqb is solvable. Recall that a
group G is said to be solvable if the following condition is satis�ed: there exists a
chain of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ ⋅ ⋅ ⋅ ⊃ Gk = {e}

16Recall the action of the left-regular representation - the trace is zero unless g = e.
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such that Gi+1 is normal in Gi for each i and Gi/Gi+1 is Abelian. It is a fact that
if G is a group, and N is a normal subgroup and N and G/N are solvable, then
G solvable. This can be used to proove that a group of order paqb is solvable by
induction.
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Monday next week, there will be only one class - at 12pm. One thing that remains
unprooved, that I used a number of times is the following

Theorem 19. Let G be a �nite group, and let (V, ρ) be an irreducible representation
over C. Then dimV divides #G.

Proof. For each g ∈ G, we have
#Cg ⋅ χ(g)

dimV
is an algebraic integer

Consider the following sum

∑
g representatives

of conj. classes

#Cgχ(g)
dimV

χ(g) = ∑
g∈G

χ(g)χ(g)
dimV

= #G

dimV
(χ,χ) = #G

dimV

and this is an algebraic integer, therefore an integer, therefore dimV divides #G.
�

This already puts some severe restrictions on the dimensions of irreducible rep-
resentations. There is a question in the sample paper that deals with this question
and the converse. That question is just a toy example and not something hugely
important though.

One thing that I stated last week without proof is that

#Cg ⋅ χ(g)
dimV

is an algebraic integer

The proof of this fact is not from representation theory, although the expression
itself is something from representation theory. The idea is the following: let CG be
a group algebra, the centre of CG is spanned by the elements

EC = ∑
g∈C

eg

Moreover, if we just consider ⊕ZEC, which is a commutative sub-ring of the group
algebra, because consider EC1 ⋅EC2 is in the centre of CG, hence a C-linear com-
bination of EC, but since EC1

EC2 ⊆ ⊕g∈GZeg, the coe�cients are integer. We need
the following

Lemma 20. If R is a commutative ring which is �nitely generated as an Abelian
group, then each x ∈ R is an �algebraic integer�, that is

xn + a1x
n−1 + ⋅ ⋅ ⋅ + an−1x + an = 0 for some a1, . . . , an ∈ Z

Proof. Suppose that f1, . . . , fn generate R as an Abelian group. Thus we
must have the following for some integers

x ⋅ f1 = a11f1 + ⋅ ⋅ ⋅ + a1mfm

⋮
x ⋅ fm = am1f1 + ⋅ ⋅ ⋅ + ammfm

Recall the Cayley-Hamilton theorem, the characteristic polynomial satis�es χA(A) =
0. The matrix A in our case has integer entries so the characteristic equation has
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integer coe�cients and either leading coe�cients 1 (or -1 depending on how you
de�ne it &c.) Denote the polynomials

f(t) = tn + a1t
n−1 + ⋅ ⋅ ⋅ + an−1t + an

Therefore f(x) ⋅ f1 = 0, f(x) ⋅ f2 = 0, . . . , f(x) ⋅ fm = 0. Then the identity has some
representation as a combination of the generators, and then if we multiply these by
f(x) they get annihilated and we obtain f(x) ⋅ 1 = f(x) = 0 in R. �

#Cg ⋅χ(g)

dimV
is the scalar by which ECg acts on V . ECg , according to the lemma,

satis�es a polynomial equation with integer coe�cients in ⊕C conj. classZEC. This
polynomial equation remains valid in any representation. This �nishes the proof of
the �rst thing.

Now, in an attempt to bring this to some sort of conclusion we will discuss the
following

23.1. Possible generalisations of the main results. We have always been
dealing with �nite groups and �nite dimensional vector spaces and mainly also being
only dealing with the case where the ground �eld was C. So, there are three possible
generalisations that we could consider. It is basically easy to deal with the case of
in�nite groups, in particular one type of group: the case of compact Lie groups. For
example the case of S1, or the case S3 which has the structure commonly known as
SU(2). In this case, the only major obstacle, is that we cannot do the �averaging�
trick that we did. Instead, we replace this with an �averaging� process that is an
integration, which can be made to make sense because of compactness.
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24.1. Possible generalisations of the main results: continued. In the
case of compact Lie groups, if you were to apply the theory to S1, in particular the
left regular representation, one would rediscover the theory of Fourier series. The
theory involved in the case of SU(2),SO(3) are involved in the case of quantum
mechanical spin, and the structure of the periodic table. There is the notion of the
�unitary trick� due to Hermann Weyl, which essentially amounts to understanding
the representations of GL(C) which is done via restricting to the compact subgroup
Un(C) and dealing with representations in the universe of compact groups. The
reason this works so well is because the representation theory of Lie groups is closely
related to the representation theory of the associated Lie algebras - the linearity of
the Lie algebras makes this a lot easier.

If you consider a �nite group and take the �eld C but consider in�nite di-
mensional vector spaces, then it is almost exactly the same - we can still use the
�averaging operator�. In particular

(1) every invariant subspace has an invariant complement.
(2) every representation has as invariant �nite dimensional subspace

i.e. there is nothing really new here.
Finally, if we consider �nite groups, and �nite dimensional representations but

vary the �eld, then there are two particular cases. The �rst is when the character-
istic of the �eld divides the order of the group - in this case, it becomes very tricky,
there are many open questions in this area. If the characteristic of the �eld does
not divide the order then

(1) every invariant subspace has an invariant complement.
(2) the group algebra, rather the than being a direct sum of matrix algebras, is

a direct sum of algebras over skew-�elds (division algebras). For example
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(a) Consider G = Z/4Z and F = R. Over the complex numbers we
would obtain four 1-dimensional representations corresponding to
{1,−1, i,−i} but over the real numbers we don't have the imaginary
numbers, so these two become �glued� together into a 2-dimensional
representation. We would have

R 1↦ 1

R 1↦ −1

R 1↦ (0 −1
1 0

)

and RG ≃ R⊕R⊕C.
(b) In the case of D4 the symmetries of the square, then all representa-

tions are de�ned over R and one can proove that

RD4 ≃ R⊕R⊕R⊕R⊕Mat2(R)
In the case of Q8 the quaternions, all 1-dimensional representations
are de�ned over real numbers but we also get a 4-dimensional irre-
ducible real representation and (the same sort of �gluing� as described
previously)

RQ8 ≃ R⊕R⊕R⊕R⊕H
Over R, the only skew-�elds (division algebras) are R,C,H. Over the
rational numbers there are in�nitely many skew-�elds.
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