MA 3416: Group representations
Selected answers/solutions to the assignment due February 2, 2015

1. A one-dimensional representation associates to each permutation σ a number $\rho(\sigma)$ such that $\rho(\sigma \tau)=\rho(\sigma) \rho(\tau)$. Note that (a) S_{n} is generated by transpositions so it is enough to know $\rho(\sigma)$ when σ is a transposition, (b) for a transposition, $\rho(\sigma)^{2}=\rho\left(\sigma^{2}\right)=1$, so each transposition is sent to ± 1, and hence every element is sent to ± 1, (c) $\rho((\mathfrak{i j})(\mathfrak{j k}))=\rho((\mathfrak{i j k}))$, and $\rho((i j k))^{3}=1$, so we note that a 3-cycle is, on the one hand, mapped to ± 1, and on the other hand, is mapped to a cubic root of 1 . Hence all 3 -cycles are mapped to 1 , and all transpositions must be mapped to the same number. (Since $\rho((\mathfrak{i j})) \rho((j k))=1$, then two transpositions are mapped to the same number if they share an element, but then any two transpositions can be "connected" like that). If all transpositions are mapped to 1 , we get the trivial representation, if all transpositions are mapped to -1 , we get the sign representation.
2. (a) For the group D_{4}, check the general case of D_{n} below.
(b) It is easy to check that $\left[\mathrm{Q}_{8}, \mathrm{Q}_{8}\right]=\{1,-1\}$, and so there are 4 one-dimensional representations. Each of them sends both i and $-i$ to the same number equal to ± 1, both \mathfrak{j} and $-j$ to the same number equal to ± 1, and both k and $-k$ to the product of those.
3. Let us note that A_{4} consists of the unit element, 3-cycles (each being an element of order 3), and products of two disjoint transpositions (each being an element of order 2). Under any one-dimensional representation, a 3 -cycle must be represented by a cubic root of 1 , and a product of two disjoint transpositions must be represented by ± 1. Note that in A_{4} we have $(123)(234)=(12)(34)$, and so this (and any other) product of two disjoint transpositions is represented by a product of two cubic root of 1 , so it must be represented by 1 . We now note that $(123)(12)(34)=(134),(123)(13)(24)=(243)$, and $(123)(14)(23)=(142)$. Therefore, (123), (134), (243), and (142) must be represented by the same cubic root of 1 , and the remaining 43 -cycles (the inverses of these) must be represented by the inverse of that cubic root. Altogether we get three one-dimensional representations.
4. One can take the counterclockwise rotation through $2 \pi / n$ for a, and one of the reflections for b. The relations are clearly satisfied.

From the relation $b a=a^{-1} b$, it is easy to check that $\left[D_{n}, D_{n}\right]$ is generated by a^{2}. Since $a^{n}=1$, we see that in the case of odd $n,\left[D_{n}, D_{n}\right]$ is equal to the subgroup generated by a, and so there are two one-dimensional representations (sending b to ± 1). In the case of even n , there are four representations, (sending each of a and b to ± 1).
5. Suppose that G is Abelian, that (V, ρ) is an irreducible representation. Take $\mathrm{g} \in \mathrm{G}$. Since for all $h \in G$ we have

$$
\rho(\mathrm{g}) \rho(\mathrm{h})=\rho(\mathrm{gh})=\rho(\mathrm{hg})=\rho(\mathrm{h}) \rho(\mathrm{g})
$$

we see that $\rho(\mathrm{g})$ is an intertwining operator, so is scalar by Schur's Lemma. Thus, all group elements act as scalars, and V has to be one-dimensional, otherwise any one-dimensional subspace is invariant.
6. It is clear that each of those linear operators has order 3, so it defines a representation. A two-dimensional representation is either irreducible or has an invariant one-dimensional subspace, which corresponds to a common eigenvector of all transformations representing group elements. But rotations of the real 2D plane have no eigenvectors.
7. We have $\rho_{ \pm}(\overline{1})=\left(\begin{array}{cc}\cos \alpha & \mp \sin \alpha \\ \pm \sin \alpha & \cos \alpha\end{array}\right)$, where $\alpha=120^{\circ}$. Suppose that we have a
homomorphism $T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, so that $T \rho_{+}(\overline{1})=\rho_{-}(\overline{1}) T$. Writing these conditions in the matrix form, we conclude $\mathfrak{a}=-\mathrm{d}$ and $\mathrm{b}=\mathrm{c}$, so every intertwining operator is of the form $\left(\begin{array}{cc}a & b \\ b & -a\end{array}\right)$; determinant of this matrix is $-a^{2}-b^{2}$, so it is invertible unless $a=b=0$, and so the representations are isomorphic.
8. Suppose that T is an intertwining operator from V to V, and that $T\left(e_{j}\right)=\sum_{i=1}^{n} a_{i j} e_{i}$. We have $\rho(\sigma) \mathrm{T}=\mathrm{T} \rho(\sigma)$, so

$$
\sum_{i=1}^{n} a_{i j} e_{\sigma(i)}=T e_{\sigma(j)}=\sum_{k=1}^{n} a_{k \sigma(j)} e_{k} .
$$

Denoting $\mathrm{k}=\sigma(\mathfrak{i})$ in the last sum, we have

$$
\sum_{i=1}^{n} a_{i j} e_{\sigma(i)}=\sum_{i=1}^{n} a_{\sigma(i) \sigma(j)} e_{\sigma(i)},
$$

so we must have $a_{i j}=a_{\sigma(i) \sigma(\mathfrak{j})}$. Basically, this shows that all entries with $\mathfrak{i}=\mathfrak{j}$ must be equal to each other, and all entries with $\mathfrak{i} \neq \mathfrak{j}$ must be equal to each other, so the space of the intertwining operators is two-dimensional. This implies that this representation can be decomposed as a direct sum of two non-isomorphic irreducible representations. One of them is the trivial representation spanned by $e_{1}+\cdots+e_{n}$, and the other one is its complement, which must have dimension $n-1$.

