
MA 3416: Group representations
Selected answers/solutions to the assignment due February 2, 2015

1. A one-dimensional representation associates to each permutation σ a number ρ(σ) such
that ρ(στ) = ρ(σ)ρ(τ). Note that (a) Sn is generated by transpositions so it is enough to
know ρ(σ) when σ is a transposition, (b) for a transposition, ρ(σ)2 = ρ(σ2) = 1, so each
transposition is sent to ±1, and hence every element is sent to ±1, (c) ρ((ij)(jk)) = ρ((ijk)),
and ρ((ijk))3 = 1, so we note that a 3-cycle is, on the one hand, mapped to ±1, and on
the other hand, is mapped to a cubic root of 1. Hence all 3-cycles are mapped to 1, and
all transpositions must be mapped to the same number. (Since ρ((ij))ρ((jk)) = 1, then two
transpositions are mapped to the same number if they share an element, but then any two
transpositions can be ”connected” like that). If all transpositions are mapped to 1, we get the
trivial representation, if all transpositions are mapped to −1, we get the sign representation.

2. (a) For the group D4, check the general case of Dn below.
(b) It is easy to check that [Q8, Q8] = {1,−1}, and so there are 4 one-dimensional repre-

sentations. Each of them sends both i and −i to the same number equal to ±1, both j and
−j to the same number equal to ±1, and both k and −k to the product of those.

3. Let us note that A4 consists of the unit element, 3-cycles (each being an element of order
3), and products of two disjoint transpositions (each being an element of order 2). Under
any one-dimensional representation, a 3-cycle must be represented by a cubic root of 1, and
a product of two disjoint transpositions must be represented by ±1. Note that in A4 we have
(123)(234) = (12)(34), and so this (and any other) product of two disjoint transpositions is
represented by a product of two cubic root of 1, so it must be represented by 1. We now note
that (123)(12)(34) = (134), (123)(13)(24) = (243), and (123)(14)(23) = (142). Therefore,
(123), (134), (243), and (142) must be represented by the same cubic root of 1, and the
remaining 4 3-cycles (the inverses of these) must be represented by the inverse of that cubic
root. Altogether we get three one-dimensional representations.

4. One can take the counterclockwise rotation through 2π/n for a, and one of the reflec-
tions for b. The relations are clearly satisfied.

From the relation ba = a−1b, it is easy to check that [Dn, Dn] is generated by a2. Since
an = 1, we see that in the case of odd n, [Dn, Dn] is equal to the subgroup generated by a,
and so there are two one-dimensional representations (sending b to ±1). In the case of even
n, there are four representations, (sending each of a and b to ±1).

5. Suppose that G is Abelian, that (V, ρ) is an irreducible representation. Take g ∈ G.
Since for all h ∈ G we have

ρ(g)ρ(h) = ρ(gh) = ρ(hg) = ρ(h)ρ(g),

we see that ρ(g) is an intertwining operator, so is scalar by Schur’s Lemma. Thus, all group
elements act as scalars, and V has to be one-dimensional, otherwise any one-dimensional
subspace is invariant.

6. It is clear that each of those linear operators has order 3, so it defines a representation.
A two-dimensional representation is either irreducible or has an invariant one-dimensional
subspace, which corresponds to a common eigenvector of all transformations representing
group elements. But rotations of the real 2D plane have no eigenvectors.

7. We have ρ±(1) =

(
cosα ∓ sinα
± sinα cosα

)
, where α = 120◦. Suppose that we have a



homomorphism T =

(
a b

c d

)
, so that Tρ+(1) = ρ−(1)T . Writing these conditions in the

matrix form, we conclude a = −d and b = c, so every intertwining operator is of the form(
a b

b −a

)
; determinant of this matrix is −a2 − b2, so it is invertible unless a = b = 0, and

so the representations are isomorphic.
8. Suppose that T is an intertwining operator from V to V, and that T(ej) =

∑n
i=1 aijei.

We have ρ(σ)T = Tρ(σ), so

n∑
i=1

aijeσ(i) = Teσ(j) =

n∑
k=1

akσ(j)ek.

Denoting k = σ(i) in the last sum, we have

n∑
i=1

aijeσ(i) =

n∑
i=1

aσ(i)σ(j)eσ(i),

so we must have aij = aσ(i)σ(j). Basically, this shows that all entries with i = j must be
equal to each other, and all entries with i 6= j must be equal to each other, so the space of
the intertwining operators is two-dimensional. This implies that this representation can be
decomposed as a direct sum of two non-isomorphic irreducible representations. One of them
is the trivial representation spanned by e1 + · · · + en, and the other one is its complement,
which must have dimension n− 1.


