MA 3416: Group representations
Selected answers/solutions to the assignment due February 12, 2015

1. (a) An irreducible representation of $\mathbb{Z} / 5 \mathbb{Z}$ must be one-dimensional, so a twodimensional representation is the sum of two one-dimensional ones, and there are $15=\binom{6}{2}$ different choices $\left(V_{i}, \rho_{i}\right) \oplus\left(V_{j}, \rho_{j}\right)$ that we can use (here V_{i} corresponds to the i-th 5th root of 1 representing $\overline{1}$).
(b) The sum of squares of dimensions of irreducible representations is 8 , and there are, as we know, four one-dimensional representations, so there is one two-dimensional irreducible representation; it is the standard representation in 2D by symmetries of the square. Of course, there are also $10=\binom{5}{2}$ reducible representations.
(c) The sum of squares of dimensions of irreducible representations is 10 , and there are, as we know, two one-dimensional representations, so there are two two-dimensional irreducible representations; one of them is the standard representation in 2D by symmetries of the square, and the other one represents each rotation through α by a rotation through 2α. Of course, there are also $3=\binom{3}{2}$ reducible representations.
(d) The sum of squares of dimensions of irreducible representations is 8 , and there are, as we know, four one-dimensional representations, so there is one two-dimensional irreducible representation; it is the representation in 2D by "Pauli matrices" $I=\left(\begin{array}{cc}\mathfrak{i} & 0 \\ 0 & -i\end{array}\right), J=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, $\mathrm{K}=\mathrm{I} J=\left(\begin{array}{ll}0 & \mathfrak{i} \\ \mathfrak{i} & 0\end{array}\right)$. Of course, there are also $10=\binom{5}{2}$ reducible representations.
2. (a) For the case of D_{4}, there are 4 one-dimensional representations $\rho_{ \pm 1, \pm 1}$, and a twodimensional representation U . For the latter, traces can be computed directly, from the fact that the character of any reflection is equal to zero, and the trace of any rotation is $2 \cos \alpha$, where α is the angle of rotation. The result is

	e	a^{2}	$\left\{b, b^{2}\right\}$	$\left\{a, a^{3}\right\}$	$\left\{b a, a^{3}\right\}$
$\chi_{\rho_{1,1}}$	1	1	1	1	1
$\chi_{\rho_{1,-1}}$	1	1	1	-1	-1
$\chi_{\rho_{-1,1}}$	1	1	-1	1	-1
$\chi_{\rho_{-1,-1}}$	1	1	-1	-1	1
χ_{u}	2	-2	0	0	0

(b) For the case of D_{5}, there are 2 one-dimensional representations $\rho_{ \pm 1}$, and two twodimensional representation U_{1} and U_{2} constructed above. For them, traces can be computed directly (as above). The result is

	e	$\left\{a, a^{4}\right\}$	$\left\{a^{2}, a^{3}\right\}$	$\left\{b, b a, \mathrm{ba}^{2}, \mathrm{ba}^{3}, \mathrm{ba}^{4}\right\}$
$\chi_{\rho_{1}}$	1	1	1	1
$\chi_{\rho_{-1}}$	1	1	1	-1
$\chi_{u_{1}}$	2	$2 \cos (2 \pi / 5)$	$2 \cos (4 \pi / 5)$	0
$\chi_{u_{2}}$	2	$2 \cos (4 \pi / 5)$	$2 \cos (2 \pi / 5)$	0

(c) For the case of Q_{8}, there are 4 one-dimensional representations $\rho_{ \pm 1, \pm 1}$, and a twodimensional representation U. For the latter, traces can be computed directly, from the explicit formula with Pauli matrices. The result is

	1	-1	$\{i,-i\}$	$\{j,-j\}$	$\{\mathrm{k},-\mathrm{k}\}$
$\chi_{\rho_{1,1}}$	1	1	1	1	1
$\chi_{\rho_{1,-1}}$	1	1	1	-1	-1
$\chi_{\rho_{-1,1}}$	1	1	-1	1	-1
$\chi_{\rho_{-1,-1}}$	1	1	-1	-1	1
χ_{u}	2	-2	0	0	0

Note that this shows that a group is not determined by its table of characters (character tables for D_{4} and Q_{8} are the same).
3. If e_{1}, \ldots, e_{n} is a basis of eigenvectors for $\rho_{V}(g)$ with eigenvalues λ_{i}, then $e_{i} \cdot e_{j}, i \leqslant \mathfrak{j}$, form a basis of $S^{2}(V)$, they are eigenvectors of $S^{2}\left(\rho_{V}(g)\right)$ with eigenvalues $\lambda_{i} \lambda_{j}$. Hence our identity reduces to

$$
\sum_{i \leqslant j} \lambda_{i} \lambda_{j}=\frac{1}{2}\left(\left(\sum_{i} \lambda_{i}\right)^{2}+\sum_{i} \lambda_{i}^{2}\right),
$$

which is obvious.
4. Let us note that if v_{1}, v_{2} form a basis of a two-dimensional vector space V, then the symmetric products $v_{1}^{\mathrm{a}} v_{2}^{\mathrm{b}}, \mathrm{a}+\mathrm{b}=\mathrm{k}$, form a basis in the k -th symmetric power of V . Therefore, if a matrix A has eigenvalues $\lambda_{1} \neq \lambda_{2}$, then the matrix $S^{k} A$ has eigenvalues $\lambda_{1}^{k}, \lambda_{1}^{k-1} \lambda_{2}, \ldots$, λ_{2}^{k} on $S^{k}(V)$, and the trace of that matrix is $\frac{\lambda_{1}^{k+1}-\lambda_{2}^{k+1}}{\lambda_{1}-\lambda_{2}}$. Let us apply it for our question. The unit element has trace $k+1$, since $\operatorname{dim} S^{k}\left(\mathbb{C}^{2}\right)=k+1$. Each transposition has eigenvalues 1 and -1 , so the trace is

$$
\frac{1-(-1)^{k+1}}{2}=\left\{\begin{array}{l}
0, \text { if } k \text { is odd } \\
1, \text { if } k \text { is even }
\end{array}\right.
$$

Each 3-cycle has eigenvalues $-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}$, so the trace is

$$
\left\{\begin{array}{l}
1 \text { if } k \equiv 0 \quad(\bmod 3) \\
-1 \text { if } k \equiv 1 \quad(\bmod 3) \\
0 \text { if } k \equiv 2 \quad(\bmod 3)
\end{array}\right.
$$

Altogether, the character depends on the behaviour modulo 6. We obtain the following table for both characters and multiplicities of irreducibles:

	e	2-cycles	3 -cycles	$\left(x, \chi_{\text {triv }}\right)$	$\left(x, \chi_{\text {sgn }}\right)$	$(x, \chi v)$
$k \equiv 0(\bmod 6)$	$k+1$	1	1	$k / 6+1$	$k / 6$	$\mathrm{k} / 3$
$k \equiv 1(\bmod 6)$	$\mathrm{k}+1$	0	-1	$(\mathrm{k}-1) / 6$	$(\mathrm{k}-1) / 6$	$(\mathrm{k}+2) / 3$
$\mathrm{k} \equiv 2(\bmod 6)$	$\mathrm{k}+1$	1	0	$(\mathrm{k}+4) / 6$	$(\mathrm{k}-2) / 6$	$(\mathrm{k}+1) / 3$
$\mathrm{k} \equiv 3(\bmod 6)$	$\mathrm{k}+1$	0	1	$(\mathrm{k}+3) / 6$	$(\mathrm{k}+3) / 6$	$\mathrm{k} / 3$
$\mathrm{k} \equiv 4(\bmod 6)$	$\mathrm{k}+1$	1	-1	$(\mathrm{k}+2) / 6$	$(\mathrm{k}-4) / 6$	$(\mathrm{k}+2) / 3$
$\mathrm{k} \equiv 5(\bmod 6)$	$\mathrm{k}+1$	0	0	$(\mathrm{k}+1) / 6$	$(\mathrm{k}+1) / 6$	$(\mathrm{k}+1) / 3$

