
MA 3416: Group representations
Selected answers/solutions to the assignment due April 2, 2015

1. First, we compute the values of ψ: ψ(15) = 2···120
24 = 10 (as the sum goes over all

h ∈ S5), ψ(213) = 0 (as any conjugate of a transposition is again a transposition, and χU
vanishes on transpositions), ψ(312) = −1·48

24 = −2 (as an element h contributes to the sum
for, say, g = (123) only if the image of {1, 2, 3} under h is contained in {1, 2, 3, 4}, so we should
choose one element out of {1, 2, 3, 4} which is not in the image of h, a permutation of the
rest of the three, and possibly swap the chosen element with 5, altogether 4 × 6 × 2 = 48

choices), ψ(221) = 2·24
24 = 2 (possible h are arbitrary elements of S4), ψ(41) = 0 (same as for

transpositions), ψ(32) = ψ(5) = 0, as no conjugates of these elements belong to S4. Now it
is easy to see that ψ = χW + χW ′ , so it is equal to the character of W ⊕W ′.

2. (a) For such a group G, we would have #G = 12 + 12 + 12 + 12 + 52 = 29. But 29
is a prime number, so the only group of order 29 is the cyclic group of that order, which is
abelian, hence all its irreducible representations are one-dimensional. Therefore, there is no
such group.

(b) There is always one conjugacy class consisting just of the unit element. Therefore,
if we denote the the numbers of elements in the centralisers of the two other conjugacy
classes n1 and n2, and the number of elements in G by n, we have n = 1 + n

n1
+ n

n2
, or

1 = 1
n + 1

n1
+ 1
n2

. Without loss of generality, n > n1 > n2 > 2 (the centraliser of an element
g contains at least two elements, g and the unit). Note that n2 6 3, for if n2 > 3, we have
1
n +

1
n1

+ 1
n2
< 3 · 13 = 1. (This also shows that if n2 = 3, then n = n1 = n2 = 3, otherwise the

sum of inverses is less than 1). If n2 = 2, then 1
2 =

1
n + 1

n1
, and we have n1 6 4, for if n1 > 4,

we have 1
n + 1

n1
< 2 · 14 =

1
2 . (This also shows that if n1 = 4, then n = n1 = 4, otherwise the

sum of inverses is less than 1
2). If n1 = 2, then we have 0 = 1

n , a contradiction. If n1 = 3,
then we have n = 6. Altogether, we see that there are at most three choices for (n,n1, n2)
for which a group with three conjugacy classes may exist: (3, 3, 3), (4, 4, 2), and (6, 3, 2). In
the first case, #G = 3, so G is Abelian cyclic, and indeed has three conjugacy classes. In the
second case, #G = 4, so G is Abelian, and therefore has four conjugacy classes. In the last
case, #G = 6, so G is either Abelian cyclic, and then it has six conjugacy classes, or S3, and
then it has three conjugacy classes.

(c) The number of complex irreducible representations of a group is equal to the number
of conjugacy classes, so such group would have three conjugacy classes. All such groups are
classified in the previous question, and they are of order at most 6.

3. (a) Let us consider the linear map Tk : Uk → Un−k that sends every basis element
eA corresponding to a subset A to the element e{1,...,n}\A corresponding to the complement
of A. This map is manifestly a vector space isomorphism, since we have Tn−kTk = IdUk

and
TkTn−k = IdUn−k

. It is also an intertwining operator, since computing complements commutes
with permutations. Therefore, these representations are isomorphic.

(b) The previous question shows that it is enough to consider the case k, l 6 n/2, for
otherwise we can replace the representations by isomorphic ones so that these inequalities
hold. We know that the dimension of the space of intertwining operators is equal to the
number of orbits on the product Pk×Pl, where Pi is the set of all i-element subsets. An orbit
of the pair (A,B) ∈ Pk × Pl is completely determined by the size of the intersection A ∩ B,
which can be any integer nor exceeding min(k, l), so the number of orbits is 1 + min(k, l).



Recalling that we may have needed to adjust k and l to fulfil k, l 6 n/2, we write the answer
as 1+ min(k, l, n− k, n− l).

4. As before, it is enough to show that for k 6 n/2. Let us prove that there exist
irreducible representations V0, V1, . . . , Vbn/2c such that for each k 6 n/2 we have

Uk ' V0 ⊕ V1 ⊕ · · · ⊕ Vk.

We shall prove the existence of Vk by induction on k. For k = 0, the statement is obvious,
since U0 is isomorphic to the trivial irreducible representation. Assume that we know it
for some k, and would like to prove it for k + 1 6 n/2. By previous question, we have
dimHomSn(Ui, Uk+1) = dimHomSn(V0 ⊕ · · · ⊕ Vi, Uk+1) = i + 1 for i 6 k, therefore we see
that the multiplicity of V0 in Uk+1 is one, the sum of the multiplicity of V0 and the multiplicity
of V1 in Uk+1 is two, etc., hence each of V0, . . . , Vk has the multiplicity one in Uk+1. Note also
that dimHomSn(Uk+1, Uk+1) = k+ 2, so Uk+1 has precisely one more irreducible constituent
Vk+1, and it is different from all the Vi for i 6 k, otherwise the corresponding dimension
would have been 22 + k = k+ 4 6= k+ 2.

Finally, the ring of intertwining operators on Uk is isomorphic to a product of k+2 copies
of C, because on each irreducible constituent an intertwining operator is a scalar. Therefore,
the ring of intertwining operators is commutative.


