MA 3416: Group representations
Homework problems due February 2, 2015

1. Prove that over a field of characteristic different from 2 the symmetric group S_{n} has precisely two one-dimensional representation: the trivial representation and the sign representation. (Hint: it was already done in class for $n=3$; generalise that approach).
2. Describe all one-dimensional complex representations of the group (a) $\mathrm{D}_{4} ;$ (b) Q_{8}.
3. The group A_{4} of all even permutations of 4 elements has order $12=24 / 2$. Describe all one-dimensional representations of that group.
4. Find in the dihedral group D_{n} (group of symmetries of the regular n-gon, consisting of the unit elements, $n-1$ nontrivial rotations, and n mirror reflections) two elements a, b that generate this group and satisfy relations $a^{n}=e, b^{2}=e$, and $b a=a^{-1} b$. Use these elements to describe all 1-dimensional complex representations of D_{n}.
5. Show that any irreducible complex representation of a finite abelian group is onedimensional.
6. Show that setting $\rho_{ \pm}(\overline{1})$ to be the counterclockwise rotation of \mathbb{R}^{2} about the origin through $\pm 120^{\circ}$ defines two real 2-dimensional representations of the cyclic group $\mathbb{Z} / 3 \mathbb{Z}$. Show that these representations $\left(\mathbb{R}^{2}, \rho_{+}\right)$and $\left(\mathbb{R}^{2}, \rho_{-}\right)$are irreducible over real numbers.
7. Describe all homomorphisms between the representations $\left(\mathbb{R}^{2}, \rho_{+}\right)$and ($\left.\mathbb{R}^{2}, \rho_{-}\right)$from the previous question, and determine whether these representations are isomorphic.
8. Consider $G=S_{n}, V=\mathbb{C}^{n}$, and define a complex representation of G as follows: $\rho(\sigma) e_{i}=e_{\sigma(i)}$. Show that V is equivalent to the direct sum of the trivial representation and an irreducible representation of dimension $n-1$. (Hint: show that the space of intertwining operators $\varphi: \mathrm{V} \rightarrow \mathrm{V}$ is two-dimensional, and use that fact to establish this statement).
