MA 3416: Group representations
Homework problems due February 12, 2015
In all questions below the ground field is \mathbb{C}.

1. Find, up to isomorphism, all 2-dimensional representations of (a) $\mathbb{Z} / 5 \mathbb{Z}$; (b) D_{4}; (c) D_{5}; (d) Q_{8}. (Note: those representations are not required to be irreducible).
2. Write down all characters of irreducible representation of (a) D_{4}; (b) D_{5}; (c) Q_{8}. Check directly the orthonormality property for these characters.

Recall that the $n^{\text {th }}$ symmetric power of a vector space W (which is denoted by $S^{n}(W)$) is a subspace in its $n^{\text {th }}$ tensor power $W^{\otimes n}$ which is spanned by all symmetric products

$$
w_{1} \cdot w_{2} \cdot \ldots \cdot w_{n}=\frac{1}{n!} \sum_{\sigma \in S_{n}} w_{\sigma(1)} \otimes w_{\sigma(2)} \otimes \ldots \otimes w_{\sigma(n)}
$$

for all $w_{1}, \ldots, w_{n} \in W$. Moreover, if e_{1}, \ldots, e_{k} is a basis of W, then the symmetric products $e_{i_{1}} \cdot e_{i_{2}} \cdot \ldots \cdot e_{i_{n}}$ with $1 \leqslant \mathfrak{i}_{1} \leqslant \mathfrak{i}_{2} \leqslant \ldots \leqslant \mathfrak{i}_{n} \leqslant k$ form a basis of the space $S^{n}(W)$. The $\mathfrak{n}^{\text {th }}$ symmetric power $S^{n}(A)$ of an operator $A: W \rightarrow W$ is defined by

$$
S^{n}(A)\left(w_{1} \cdot w_{2} \cdot \ldots \cdot w_{n}\right)=\left(A w_{1}\right) \cdot\left(A w_{2}\right) \cdot \ldots \cdot\left(A w_{n}\right) .
$$

If (W, ρ) is a representation of a finite group $G, S^{n}(W)$ is an invariant subspace of all the operators $S^{n}(\rho(g))$ acting on $W^{\otimes n}$; this subspace is called the $n^{\text {th }}$ symmetric power of the representation W.
3. Prove that $\chi_{S^{2}(V)}(g)=\frac{1}{2}\left(\chi_{V}(g)^{2}+\chi_{V}\left(g^{2}\right)\right.$. (Hint: recall that each individual matrix $\rho_{V}(\mathrm{~g})$ can be diagonalised, use a basis of V consisting of eigenvectors for $\rho_{V}(\mathrm{~g})$).
4. For each k, compute the multiplicities of irreducible representation in the representations of S_{3} arising in k-th symmetric power of its two-dimensional irreducible representation.

