MA 3416: Group representations
Homework problems due April 2, 2015

1. Consider S_{4} as a subgroup in S_{5} and define a function ψ on S_{5} by the formula

$$
\psi(\mathrm{g})=\frac{1}{24} \sum_{\substack{\mathrm{h} \in \mathrm{~S}_{5}, \mathrm{ggh}^{-1} \in S_{4}}} \chi u\left(\mathrm{hgh}^{-1}\right),
$$

where U denotes the 2-dimensional complex irreducible representation of S_{4}; if the sum is over an empty set, it is considered to be equal to zero. Prove that ψ is a character of some complex representation of S_{5}, and find multiplicities of irreducibles in that representation.
2. (a) Does there exist a finite group which has precisely four one-dimensional complex representations, precisely one five-dimensional complex irreducible representation, and no other complex irreducible representations?
(b) Using the fact that that the number of elements in the conjugacy class of $\mathrm{g} \in \mathrm{G}$ is equal to $\frac{\# G}{\# C_{g}^{G}}$, where C_{g}^{G} is the centraliser of g, prove that all finite groups with three conjugacy classes are $\mathbb{Z} / 3 \mathbb{Z}$ and S_{3}.
(c) Prove that though $1+5^{2}+13^{2}$ is divisible by 5 and 13 , there is no finite group which has just three complex irreducible representations whose dimensions are 1,5 , and 13 .
3. Let us consider the set representation U_{k} of S_{n} that arises from the action of S_{n} on the set of all k-element subsets of $\{1,2, \ldots, n\}$.
(a) Prove that $\mathrm{U}_{\mathrm{k}} \simeq \mathrm{U}_{\mathrm{n}-\mathrm{k}}$.
(b) Compute the dimension of the space of intertwining operators $\operatorname{Hom}_{S_{n}}\left(U_{k}, U_{l}\right)$ for all k and l .
4. In the notation of the previous question, show that the ring of intertwining operators $\operatorname{Hom}_{S_{n}}\left(\mathrm{U}_{\mathrm{k}}, \mathrm{U}_{\mathrm{k}}\right)$ (where addition and multiplication is addition and composition of linear transformations respectively) is commutative.

