3416: Group representations

Dr. Vladimir Dotsenko (Vlad)

Lecture 14

These notes account for some differences (and misprints) from notes of 2012/13.

Today, we shall talk about the relationship between representations of G and representations of its index two subgroups. Let us assume that G is a finite group, and H is an index two subgroup in G. It is well known from elementary group theory that H is normal (because both left and right cosets are just H and the complement $G \setminus H$).

Note that as a normal subgroup, H is a union of G-conjugacy classes. Let us first investigate the relationship between conjugacy classes of G and H.

Theorem 1. For each conjugacy class C of G that is contained in H, two situations are possible: (1) C is a conjugacy class in H, and (2) C is a disjoint union of two conjugacy classes of the same cardinality.

Proof. Recall that the number of elements in a conjugacy class $C^G(x)$ of $x \in G$ is equal to the index of the centraliser $C_x^G = \{g \in G : gx = xg\}$. This follows from a more general statement that for a group action, the number of elements in an orbit of a point p is equal to the index of the stabiliser of p.

number of elements in an orbit of a point p is equal to the index of the stabiliser of p. Therefore, for $x \in H$, $\#C^G(x) = \frac{\#G}{\#C_x^G}$, and $\#C^H(x) = \frac{\#H}{\#C_x^H} = \frac{\#G}{2\#C_x^H}$. Also, either $C_x^G \subset H$, in which case $C_x^G = C_x^H$, or $C_x^G \not\subset H$, in which case multiplication by any element $a \in C_x^G \setminus H$ provides a bijection between C_x^H and $C_x^G \setminus H$, so either $\#C_x^G = \#C_x^H$, or $\#C_x^G = 2\#C_x^H$. We conclude that

$$\#C^{\mathsf{H}}(x) = \begin{cases} \#C^{\mathsf{G}}(x), \text{ if } C_x^{\mathsf{G}} \not\subset \mathsf{H}, \\ \frac{1}{2} \#C^{\mathsf{G}}(x), \text{ if } C_x^{\mathsf{G}} \subset \mathsf{H}. \end{cases}$$

 $\text{ In the latter case, } C^G(x) = C^H(x) \cup C^H(yxy^{-1}), \text{ where } y \text{ is any element from } G \setminus (H \cup C^G_x). \hfill \square$

This theorem has a counterpart on the level of complex representations.

Theorem 2. For each irreducible representation (V, ρ) of G, two situations are possible: (1) (V, ρ) remains irreducible as a representation of H, and (2) (V, ρ) splits, as a representation of H, into a direct sum of two non-isomorphic irreducible representations of the same dimension.

Proof. We have

$$1 = (\chi_{V}, \chi_{V})_{G} = \frac{1}{\#G} \sum_{g \in G} |\chi_{V}(g)|^{2} \ge \frac{1}{2\#H} \sum_{g \in H} |\chi_{V}(g)|^{2},$$
$$2 \ge (\chi_{V}, \chi_{V})_{H} = \ge \frac{1}{\#H} \sum_{g \in H} |\chi_{V}(g)|^{2},$$

 \mathbf{SO}

and hence
$$(V, \rho)$$
 is isomorphic to a sum of at most two irreducibles, and if it is isomorphic to a sum of two irreducibles, then they are non-isomorphic. Moreover, it remains irreducible if and only if there exist elements of $G \setminus H$ on which χ_{ρ} takes non-zero values.

Now, suppose that $(V, \rho) = (V_1, \rho_1) \oplus (V_2, \rho_2)$ as representations of H. Fix $y \in G \setminus H$. The subspace $\rho(y)(V_1)$ is H-invariant: we have $\rho(h)\rho(y)(V_1) = \rho(y)\rho(y^{-1}hy)(V_1) \subset \rho(y)(V_1)$ because H is normal, and V_1 is H-invariant. Therefore, either $\rho(y)(V_1) = V_1$ or $\rho(y)(V_1) = V_2$. In the former case, we would conclude that V_1 is G-invariant (since $G = H \cup Hy$), which contradicts irreducibility of V. Hence $\rho(y)(V_1) = V_2$, so the two summands are isomorphic as vector spaces (but not representations).

Let us now apply this to the example $A_4 \subset S_4$.

The conjugacy classes of even permutations in S_4 are the unit element, the 3-cycles, and pairs of disjoint transpositions. The centraliser of a 3-cycle is the cyclic subgroup generated by it, so it is contained in A_4 , and the conjugacy class splits into two parts, {(123), (243), (134), (142)} and {(132), (124), (143), (234)}. The centraliser of a product of two disjoint transpositions contains each of those transpositions, so the conjugacy class does not split. Altogether, A_4 has four conjugacy classes.

The irreducible representations of S_4 are: the trivial representation and the sign representation (they become the same one-dimensional representation of A_4), the three-dimensional representation (V, ρ) and $(V, \rho \otimes \text{sgn})$ (they become the same representation of A_4 , it is irreducible because the character χ_{ρ} takes non-zero values on some odd permutations), and the two-dimensional representation, for which the character vanishes on all odd permutations, so this representation splits as a direct sum of two non-isomorphic one-dimensional representations. Those are representations by cubic roots of unity that you constructed in homework.