3416: Group representations

Dr. Vladimir Dotsenko (Vlad)

Lecture 14

These notes account for some differences (and misprints) from notes of 2012/13.
Today, we shall talk about the relationship between representations of G and representations of its index two subgroups. Let us assume that G is a finite group, and H is an index two subgroup in G . It is well known from elementary group theory that H is normal (because both left and right cosets are just H and the complement $G \backslash H)$.

Note that as a normal subgroup, H is a union of G-conjugacy classes. Let us first investigate the relationship between conjugacy classes of G and H .
Theorem 1. For each conjugacy class C of G that is contained in H , two situations are possible: (1) C is a conjugacy class in H , and (2) C is a disjoint union of two conjugacy classes of the same cardinality.

Proof. Recall that the number of elements in a conjugacy class $C^{G}(x)$ of $x \in G$ is equal to the index of the centraliser $C_{x}^{G}=\{g \in G: g x=x g\}$. This follows from a more general statement that for a group action, the number of elements in an orbit of a point p is equal to the index of the stabiliser of p.

Therefore, for $x \in H, \# C^{G}(x)=\frac{\# G}{\# C_{x}^{G}}$, and $\# C^{H}(x)=\frac{\# H}{\# C_{x}^{H}}=\frac{\# G}{2 \# C_{x}^{H}}$. Also, either $C_{x}^{G} \subset H$, in which case $C_{x}^{G}=C_{x}^{H}$, or $C_{x}^{G} \not \subset H$, in which case multiplication by any element $a \in C_{x}^{G} \backslash H$ provides a bijection between C_{x}^{H} and $C_{x}^{G} \backslash H$, so either $\# C_{x}^{G}=\# C_{x}^{H}$, or $\# C_{x}^{G}=2 \# C_{x}^{H}$. We conclude that

$$
\# C^{H}(x)=\left\{\begin{array}{l}
\# C^{G}(x), \text { if } C_{x}^{G} \not \subset H \\
\frac{1}{2} \# C^{G}(x), \text { if } C_{x}^{G} \subset H
\end{array}\right.
$$

In the latter case, $C^{G}(x)=C^{H}(x) \cup C^{H}\left(y x y^{-1}\right)$, where y is any element from $G \backslash\left(H \cup C_{x}^{G}\right)$.
This theorem has a counterpart on the level of complex representations.
Theorem 2. For each irreducible representation (V, ρ) of G , two situations are possible: (1) (V, ρ) remains irreducible as a representation of H , and (2) (V, ρ) splits, as a representation of H , into a direct sum of two non-isomorphic irreducible representations of the same dimension.

Proof. We have

$$
1=\left(\chi_{v}, \chi_{v}\right)_{G}=\frac{1}{\# G} \sum_{g \in G}\left|\chi_{v}(g)\right|^{2} \geqslant \frac{1}{2 \# H} \sum_{g \in H}\left|\chi_{v}(g)\right|^{2}
$$

so

$$
2 \geqslant\left(\chi v, \chi_{v}\right)_{H}=\geqslant \frac{1}{\# H} \sum_{g \in H}|\chi v(g)|^{2}
$$

and hence (V, ρ) is isomorphic to a sum of at most two irreducibles, and if is isomorphic to a sum of two irreducibles, then they are non-isomorphic. Moreover, it remains irreducible if and only if there exist elements of $G \backslash H$ on which χ_{ρ} takes non-zero values.

Now, suppose that $(V, \rho)=\left(V_{1}, \rho_{1}\right) \oplus\left(V_{2}, \rho_{2}\right)$ as representations of H. Fix $y \in G \backslash H$. The subspace $\rho(y)\left(V_{1}\right)$ is H-invariant: we have $\rho(h) \rho(y)\left(V_{1}\right)=\rho(y) \rho\left(y^{-1} h y\right)\left(V_{1}\right) \subset \rho(y)\left(V_{1}\right)$ because H is normal, and V_{1} is H-invariant. Therefore, either $\rho(\mathrm{y})\left(\mathrm{V}_{1}\right)=\mathrm{V}_{1}$ or $\rho(\mathrm{y})\left(\mathrm{V}_{1}\right)=\mathrm{V}_{2}$. In the former case, we would conclude that V_{1} is G-invariant (since $G=H \cup H y$), which contradicts irreducibility of V. Hence $\rho(y)\left(V_{1}\right)=V_{2}$, so the two summands are isomorphic as vector spaces (but not representations).

Let us now apply this to the example $A_{4} \subset S_{4}$.
The conjugacy classes of even permutations in S_{4} are the unit element, the 3-cycles, and pairs of disjoint transpositions. The centraliser of a 3 -cycle is the cyclic subgroup generated by it, so it is contained in A_{4}, and the conjugacy class splits into two parts, $\{(123),(243),(134),(142)\}$ and $\{(132),(124),(143),(234)\}$. The centraliser of a product of two disjoint transpositions contains each of those transpositions, so the conjugacy class does not split. Altogether, A_{4} has four conjugacy classes.

The irreducible representations of S_{4} are: the trivial representation and the sign representation (they become the same one-dimensional representation of A_{4}), the three-dimensional representation (V, ρ) and $(V, \rho \otimes \operatorname{sgn})$ (they become the same representation of A_{4}, it is irreducible because the character χ_{ρ} takes non-zero values on some odd permutations), and the two-dimensional representation, for which the character vanishes on all odd permutations, so this representation splits as a direct sum of two non-isomorphic onedimensional representations. Those are representations by cubic roots of unity that you constructed in homework.

