
3416: Group representations

Dr. Vladimir Dotsenko (Vlad)

Lecture 14

These notes account for some differences (and misprints) from notes of 2012/13.
Today, we shall talk about the relationship between representations of G and representations of its index

two subgroups. Let us assume that G is a finite group, and H is an index two subgroup in G. It is well
known from elementary group theory that H is normal (because both left and right cosets are just H and
the complement G \H).

Note that as a normal subgroup, H is a union of G-conjugacy classes. Let us first investigate the
relationship between conjugacy classes of G and H.

Theorem 1. For each conjugacy class C of G that is contained in H, two situations are possible: (1) C is
a conjugacy class in H, and (2) C is a disjoint union of two conjugacy classes of the same cardinality.

Proof. Recall that the number of elements in a conjugacy class CG(x) of x ∈ G is equal to the index of the
centraliser CGx = {g ∈ G : gx = xg}. This follows from a more general statement that for a group action, the
number of elements in an orbit of a point p is equal to the index of the stabiliser of p.

Therefore, for x ∈ H, #CG(x) = #G
#CG

x
, and #CH(x) = #H

#CH
x

= #G
2#CH

x
. Also, either CGx ⊂ H, in which

case CGx = CHx , or CGx 6⊂ H, in which case multiplication by any element a ∈ CGx \ H provides a bijection
between CHx and CGx \H, so either #CGx = #CHx , or #CGx = 2#CHx . We conclude that

#CH(x) =

{
#CG(x), if CGx 6⊂ H,
1
2

#CG(x), if CGx ⊂ H.

In the latter case, CG(x) = CH(x) ∪ CH(yxy−1), where y is any element from G \ (H ∪ CGx ).

This theorem has a counterpart on the level of complex representations.

Theorem 2. For each irreducible representation (V, ρ) of G, two situations are possible: (1) (V, ρ) remains
irreducible as a representation of H, and (2) (V, ρ) splits, as a representation of H, into a direct sum of two
non-isomorphic irreducible representations of the same dimension.

Proof. We have

1 = (χV , χV)G =
1

#G

∑
g∈G

|χV(g)|
2 >

1

2#H

∑
g∈H

|χV(g)|
2,

so

2 > (χV , χV)H =>
1

#H

∑
g∈H

|χV(g)|
2,

and hence (V, ρ) is isomorphic to a sum of at most two irreducibles, and if it is isomorphic to a sum of
two irreducibles, then they are non-isomorphic. Moreover, it remains irreducible if and only if there exist
elements of G \H on which χρ takes non-zero values.

Now, suppose that (V, ρ) = (V1, ρ1) ⊕ (V2, ρ2) as representations of H. Fix y ∈ G \ H. The subspace
ρ(y)(V1) is H-invariant: we have ρ(h)ρ(y)(V1) = ρ(y)ρ(y−1hy)(V1) ⊂ ρ(y)(V1) because H is normal, and
V1 is H-invariant. Therefore, either ρ(y)(V1) = V1 or ρ(y)(V1) = V2. In the former case, we would conclude
that V1 is G-invariant (since G = H ∪ Hy), which contradicts irreducibility of V. Hence ρ(y)(V1) = V2, so
the two summands are isomorphic as vector spaces (but not representations).
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Let us now apply this to the example A4 ⊂ S4.
The conjugacy classes of even permutations in S4 are the unit element, the 3-cycles, and pairs of disjoint

transpositions. The centraliser of a 3-cycle is the cyclic subgroup generated by it, so it is contained in A4,
and the conjugacy class splits into two parts, {(123), (243), (134), (142)} and {(132), (124), (143), (234)}. The
centraliser of a product of two disjoint transpositions contains each of those transpositions, so the conjugacy
class does not split. Altogether, A4 has four conjugacy classes.

The irreducible representations of S4 are: the trivial representation and the sign representation (they
become the same one-dimensional representation of A4), the three-dimensional representation (V, ρ) and
(V, ρ ⊗ sgn) (they become the same representation of A4, it is irreducible because the character χρ takes
non-zero values on some odd permutations), and the two-dimensional representation, for which the character
vanishes on all odd permutations, so this representation splits as a direct sum of two non-isomorphic one-
dimensional representations. Those are representations by cubic roots of unity that you constructed in
homework.
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