3416: Group representations

Dr. Vladimir Dotsenko (Vlad)

Lecture 22-23

These notes account for some differences (and misprints) from notes of 2012/13.

In these lectures, we shall outline the classification of complex representations of the group S_n . Let us start with some basic combinatorics. By a *partition* λ of n, we mean a decomposition $n = \lambda_1 + \lambda_2 + \cdots + \lambda_k$ into several positive parts. The order of parts does not matter, so we may order them as we please; we shall always assume $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k > 0$. We shall often append several parts $\lambda_{k+1}, \ldots, \lambda_n$ equal to zero, if we want the total number of parts to be equal to n (in general, the number of parts does not exceed n).

We shall say that a partition λ dominates a partition μ , and write $\lambda \geq \mu$, if

$$\begin{array}{c} \lambda_1 \geqslant \mu_1, \\ \lambda_1 + \lambda_2 \geqslant \mu_1 + \mu_2, \\ \dots, \\ \lambda_1 + \dots + \lambda_n \geqslant \mu_1 + \mu_2 + \dots + \mu_n. \end{array}$$

Partitions are usually represented by *Young diagrams*: a Young diagram is an arrangement of unit squares in the quadrant $\{x > 0, y < 0\}$, where for each m the part λ_m of a partition is represented by λ_m unit squares with top left corners $(1 - m, 0), (1 - m, 1), \dots (1 - m, \lambda_m - 1)$.

Let λ be a partition of n. A Young tableau of shape λ is a numbering of unit squares of the Young diagram of λ by distinct integers from 1 to n.

The following result is the core fact of representation theory of symmetric groups.

Lemma 1. Let λ and μ be partitions of \mathfrak{n} . Suppose that T is a Young tableau of shape λ , T' is a Young tableau of shape μ , and further suppose that any two numbers from the same row of T' are in different columns of T. Then $\lambda \geq \mu$.

Proof. Consider the numbers marking squares from the first \mathfrak{m} rows of T' . Our assumption implies that no $\mathfrak{m} + 1$ of these numbers are in the same column of T . Thus, by a permutation of numbers within columns of T , we can ensure that all these numbers mark squares end up in the first \mathfrak{m} rows of T . Thus, the sum of lengths of the first \mathfrak{m} rows of T' , that is $\mu_1 + \cdots + \mu_k$, does not exceed the sum of lengths of the first \mathfrak{m} rows of T , that is $\lambda_1 + \cdots + \lambda_k$ for each k, so $\lambda \geq \mu$.

A Young tabloid of shape λ is a Young tableau up to row permutations: two tableau are considered equal as tabloids if one is obtained from the other by permuting numbers inside the rows.

Both the set T_{λ} of all Young tableau of shape λ and the set M_{λ} of all Young tabloids of shape λ have a natural action of the group S_n permuting the numbers assigned to squares: the number

assigned to the square k is sent to $\sigma^{-1}(k)$. These sets give rise to the corresponding permutation representations $(\mathbb{C}T_{\lambda}, \tilde{\rho}_{\lambda})$ and $(\mathbb{C}M_{\lambda}, \rho_{\lambda})$. We shall denote basis elements of $\mathbb{C}T_{\lambda}$ by Latin letters, e.g. T, and basis elements of $\mathbb{C}M_{\lambda}$ by Latin letters in square brackets, e.g. [T]. There is a homomorphism of representations $\mathbb{C}T_{\lambda} \to \mathbb{C}M_{\lambda}$ sending each tableau T to the corresponding tabloid [T].

To each Young tableau T, one can associate its *column group* C_T ; it is a subgroup of the symmetric group that permutes numbers within columns of T, or more formally

 $C_T = \{\sigma \in S_n \colon \mbox{ for each i, the numbers i and $\sigma(i)$ are in the same column of T}\}.$

For instance, if T is any tableau of shape $\lambda = (n)$, then $C_T = \{e\}$, and if T is any tableau of shape (1^n) , then $C_T = S_n$. In general the column group depends on T, not just on its shape. However, column groups for two different tableau of the same shape are related in a very simple way.

Lemma 2. We have $C_{\sigma,T} = \sigma C_T \sigma^{-1}$.

Proof. Conjugation in the symmetric group corresponds to re-numbering: if τ permutes some elements i_1, \ldots, i_m in a certain way, then $\sigma \tau \sigma^{-1}$ permutes $\sigma(i_1), \ldots, \sigma(i_m)$ in the same way. So, if $\tau \in C_T$, then $\sigma \tau \sigma^{-1} \in C_{\sigma,T}$, and the other way round, if $\tau \in C_{\sigma,T}$, then $\sigma^{-1} \tau \sigma \in C_T$.

Let λ be a partition of n, and let T be a Young tableau of shape λ . Let us define, for each representation (V, ρ) , a linear transformation $b_{T,\rho}$ by the formula

$$b_{T,\rho} = \sum_{\sigma \in C_T} \operatorname{sign}(\sigma) \rho(\sigma).$$

Let λ be a partition of n, and let T be a Young tableau of shape λ . A Young polytabloid e_T associated to a Young tableau T is the element of $\mathbb{C}M_{\lambda}$ defined by the formula

$$e_{\mathrm{T}} = b_{\mathrm{T},\rho_{\lambda}}([\mathrm{T}]).$$

Let λ be a partition of \mathfrak{n} . The *Specht module* S_{λ} is the subspace of $\mathbb{C}M_{\lambda}$ spanned by all polytabloids e_{T} associated to all Young tableau of shape λ .

Note that $\rho_{\lambda}(\sigma)(e_{T}) = e_{\sigma,T}$:

$$\begin{split} \rho_{\lambda}(\sigma)(e_{T}) &= \rho_{\lambda}(\sigma) \sum_{\tau \in C_{T}} \operatorname{sign}(\tau) \rho_{\lambda}(\tau)([T]) = \\ &= \sum_{\tau \in C_{T}} \operatorname{sign}(\tau) \rho_{\lambda}(\sigma \tau \sigma^{-1}) \rho_{\lambda}(\sigma)([T]) = \sum_{\tau \in C_{\sigma,T}} \operatorname{sign}(\tau) \rho_{\lambda}(\tau)([\sigma,T]) = e_{\sigma,T}, \end{split}$$

and therefore S_{λ} is an invariant subspace of $\mathbb{C}M_{\lambda}$; moreover, this computation shows that an invariant subspace of $\mathbb{C}M_{\lambda}$ that contains one of the polytabloids e_{T} must contain S_{λ} . We shall use this later.

Lemma 3. Let λ and μ be partitions of n, let T be a Young tableau of shape λ , and let T' be a Young tableau of shape μ . Suppose that

$$\mathfrak{b}_{\mathsf{T},\mathfrak{o}_{\mathrm{II}}}([\mathsf{T}']) \neq \mathfrak{0}.$$

Then $\lambda \geq \mu$, and if $\lambda = \mu$, then $b_{T,\rho_{\lambda}}([T']) = \pm e_{T}$.

Proof. Suppose that a and b are in the same row of T', or, in other words, that (ab).[T'] = [T']. Let us show that under our assumptions these two numbers must be in different columns of T. Assume the contrary, so that $(ab) \in C_T$. Let x_1, \ldots, x_l be representatives of the right cosets $C_T/\langle (ab) \rangle$. We have $C_T = \{x_1, \ldots, x_l, x_l(ab), \ldots, x_l(ab)\}$, and this shows that

$$b_{T,\rho_{\mu}}([T']) = \sum_{i=1}^{l} (\operatorname{sign}(x_{l})\rho_{\mu}(x_{l})([T']) + \sum_{i=1}^{l} (\operatorname{sign}(x_{l}(ab))\rho_{\mu}(x_{l})\rho_{\mu}((ab))([T']) = 0,$$

a contradiction. Thus, $\lambda \ge \mu$ by Lemma 1. Moreover, if $\lambda = \mu$, the proof of Lemma 1 shows that T' is obtained from T by action of a permutation $\tau \in C_T$. Therefore,

$$b_{\mathsf{T},\rho_{\lambda}}([\mathsf{T}']) = \sum_{\sigma \in C_{\mathsf{T}}} \operatorname{sign}(\sigma)\rho(\sigma)\rho_{\lambda}(\tau)([\mathsf{T}]) = \operatorname{sign}(\tau) \sum_{\sigma \in C_{\mathsf{T}}} \operatorname{sign}(\sigma\tau)\rho_{\lambda}(\sigma\tau)([\mathsf{T}]) = \operatorname{sign}(\tau)e_{\mathsf{T}}.$$

Since every vector in $\mathbb{C}M_{\lambda}$ is a combination of Young tabloids of shape λ , we conclude that

Corollary 1. Suppose that T is a Young tableau of shape λ , and that $\nu \in \mathbb{C}M_{\lambda}$. Then $b_{T,\rho_{\lambda}}(\nu)$ is a scalar multiple of e_{T} .

We are quite close to obtain a full classification of irreducible representations. Let us state the last auxiliary result.

Lemma 4. Let λ and μ be partitions of \mathfrak{n} , and suppose that there exists homomorphism of representations $\theta \in \operatorname{Hom}_{S_{\mathfrak{n}}}(\mathbb{C}M_{\lambda},\mathbb{C}M_{\mu})$ for which $S_{\lambda} \not\subset \operatorname{Ker} \theta$. Then $\lambda \succeq \mu$. If $\lambda = \mu$, then the restriction of θ on S_{λ} is a multiplication by a scalar.

Proof. Let T be a Young tableau of shape λ . Clearly, $e_T \notin \text{Ker }\theta$ (the kernel of a homomorphism of representations is an invariant subspace, and we know that an invariant subspace of $\mathbb{C}M_{\lambda}$ containing one polytabloid must contain S_{λ}). We have

$$0 \neq \theta(e_{\mathsf{T}}) = \theta(b_{\mathsf{T},\rho_{\lambda}}([\mathsf{T}])) = b_{\mathsf{T},\rho_{\mu}}(\theta([\mathsf{T}])).$$

But $\theta([T])$ is a linear combination of Young tabloids of shape μ , so at least one of them is not annihilated by $b_{T,\rho\mu}$. By Lemma 3, we have $\lambda \geq \mu$. Furthermore, if $\lambda = \mu$, then by Corollary 1, $\theta(e_T) = b_{T,\rho\lambda}(\theta([T]))$ is a scalar multiple of e_T , and since $\rho_\lambda(\sigma)(e_T) = e_{\sigma,T}$, we conclude that θ acts by that very scalar on S_λ , the span of all polytabloids.

Corollary 2. Let λ and μ be partitions of \mathfrak{n} , and suppose that there exists a nonzero linear map $\theta \in \operatorname{Hom}_{S_{\mathfrak{n}}}(S_{\lambda}, \mathbb{C}M_{\mu})$. Then $\lambda \succeq \mu$. If $\lambda = \mu$, then θ is a multiplication by a scalar.

Proof. As an invariant subspace of $\mathbb{C}M_{\lambda}$, the Specht module S_{λ} admits an invariant complement, $\mathbb{C}M_{\lambda} = S_{\lambda} \oplus U$. Every homomorphism $\theta \in \operatorname{Hom}_{S_n}(S_{\lambda}, \mathbb{C}M_{\mu})$ can be extended to a homomorphism $\tilde{\theta} \in \operatorname{Hom}_{S_n}(\mathbb{C}M_{\lambda}, \mathbb{C}M_{\mu})$ by letting it be equal to zero on U, and Lemma 4 applies.

Theorem 1. 1. Each Specht module S_{λ} is an irreducible representation of S_n .

2. If $S_{\lambda} \simeq S_{\mu}$, then $\lambda = \mu$.

3. Each complex irreducible representation of S_n is isomorphic to one of the Specht modules S_{λ} .

- 4. The irreducible constituents of $\mathbb{C}M_{\mu}$ are Specht modules S_{λ} with $\lambda \geq \mu$ (with some multiplicities), and S_{μ} appears in $\mathbb{C}M_{\mu}$ with multiplicity one.
- *Proof.* 1. Every homomorphism $\alpha \in \operatorname{Hom}_{S_n}(S_\lambda, S_\lambda)$ can be viewed as a homomorphism from S_λ to $\mathbb{C}M_\lambda$, and Corollary 2 implies that this homomorphism is a multiplication by a scalar. This implies that the intertwining number $c(S_\lambda, S_\lambda)1$ is equal to 1, so S_λ is irreducible.
 - 2. If $S_{\lambda} \simeq S_{\mu}$, then, recalling that Specht modules are subspaces of the spaces spanned by all Young tabloids, we can construct nonzero homomorphisms $\theta_{\lambda} \in \operatorname{Hom}_{S_n}(S_{\lambda}, \mathbb{C}M_{\mu})$ and $\theta_{\mu} \in \operatorname{Hom}_{S_n}(S_{\mu}, \mathbb{C}M_{\lambda})$. This implies that $\lambda \succeq \mu$ and $\mu \succeq \lambda$, so $\lambda = \mu$.
 - 3. We know that the number of complex irreducible representations of a finite group is equal to the number of conjugacy classes. Since the Specht modules are irreducible and pairwise non-isomorphic, and the number of conjugacy classes of S_n is equal to the number of partitions of n, we already exhausted all irreducible representations.
 - 4. This follows immediately from Corollary 2: if S_{λ} is a constituent of $\mathbb{C}M_{\mu}$, then there exists a nonzero linear map $\theta \in \operatorname{Hom}_{S_n}(S_{\lambda}, \mathbb{C}M_{\mu})$, and if $\lambda = \mu$, this same corollary states that $c(S_{\lambda}, \mathbb{C}M_{\mu}) = 1$.

Remark 1. In fact, the previous theorem is valid over any field F of characteristic zero; the proof needs to be slightly modified if the field is not algebraically closed, but essentially it all boils down to the fact that the Specht modules are "defined over \mathbb{Q} ": all the coefficients of all the polytabloids written in the basis of tabloids are integers, so the matrices representing all permutations have rational entries.