3416: Group representations

Dr. Vladimir Dotsenko (Vlad)

Lecture 5

These notes account for some differences (and misprints) from notes of 2012/13.
The main point today is to start studying representations under the hypothesis of complete reducibility from the previous class.

Schur's lemma

The following result holds in a much more general context than just representations of finite groups (as it should, as we remarked that the definition of a homomorphism is very general).

Theorem 1 (Schur's Lemma). Let (V, ρ) and (W, τ) be two irreducible representations of G .

1. A homomorphism of representations $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is either zero or an isomorphism.
2. Over an algebraically closed field F , e.g. \mathbb{C} a homomorphism of representations $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ is a scalar multiple of the identity map, $\mathrm{T}=\lambda \mathrm{Id}$.

Proof. For the first part, let us note that $\operatorname{ker}(\mathrm{T})$ is an invariant subspace of V and $\operatorname{Im}(\mathrm{T})$ is an invariant subspace of W. Indeed, if $v \in \operatorname{ker}(\mathrm{~T})$, then $T \rho(\mathrm{~g}) v=\tau(\mathrm{g}) \mathrm{T} v=0$, so $\rho(\mathrm{g}) v \in \operatorname{ker} \mathrm{~T}$, and similarly, if $w \in \operatorname{Im}(\mathrm{~T})$, then $w=T v$ for some v, and $\tau(\mathrm{g}) w=\tau(\mathrm{g}) \mathrm{T} v=\mathrm{T} \rho(\mathrm{g}) v \in \operatorname{Im}(\mathrm{~T})$.

Because V is irreducible, we conclude that $\operatorname{ker}(T)=\{0\}$ or $\operatorname{ker}(T)=V$. In the former case, T is an injective map, in the second case $T=0$. Because W is irreducible, we conclude that $\operatorname{Im}(T)=\{0\}$ or $\operatorname{Im}(T)=W$. In the former case, $T=0$, in the latter case, T is a surjective map. We conclude that if $T \neq 0$, then T is both injective and surjective, therefore bijective. A bijective map is invertible, so is an isomorphism.

For the second part, let us note that over an algebraically closed field, every linear transformation has an eigenvalue. Let λ be an eigenvalue of T. Then $T-\lambda I d$ is not invertible, and hence must be equal to zero.

Intertwining numbers

A very useful invariant of representation theory is the intertwining number of two representations.
Definition 1. Let (V, ρ) and (W, τ) be two representations of G. The set $\operatorname{Hom}_{G}(V, W)$ of all homomorphisms of representations $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ is clearly a subspace in the vector space of all linear maps Hom (V, W). The dimension of this subspace is called the intertwining number of V and W and is denoted by $c(V, W)$.

Example 1. Schur's Lemma essentially states that for two irreducible representations over an algebraically closed field we have $c(V, W)=0$ if these representations are not isomorphic, and $c(V, W)=1$ if these representations are isomorphic.

Theorem 2. Suppose that the ground field is algebraically closed. Let $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{k}}$ be several pairwise nonisomorphic representations of G , and let $\mathrm{V} \simeq \bigoplus_{\mathrm{i}=1}^{k} \mathrm{~V}_{i}^{\oplus \mathrm{a}_{i}}, \mathrm{~W} \simeq \bigoplus_{i=1}^{k} \mathrm{~V}_{i}^{\oplus \mathrm{b}_{i}}$. Then

$$
c(V, W)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}
$$

Proof. A linear map T: V $\rightarrow \mathrm{W}$ is made of "blocks", T_{pq} corresponding to inclusion of the p -th of the direct summands into V, applying the map T on that summand, and projecting onto the q-th of the direct summands in W. Each of these blocks is a homomorphism of representations, since it is made of homomorphisms (the original map T , inclusions and projections). Each of the summands is irreducible, so by Schur's Lemma, each block is zero or a scalar, depending on whether the corresponding summands are isomorphic. For each \mathfrak{i}, there are $a_{i} b_{i}$ pairs of summands which both are isomorphic to V_{i}, and each such pair contributes 1 to the total dimension, since there is just an arbitrary scalar to choose for the corresponding block. Altogether the dimension of the vector space is equal to $a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{k} b_{k}$, as required.

Remark 1. In particular, if $V=W$, we get $c(V, V)=a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}$. This means that if $c(V, V)=1$, then V is irreducible, if $\mathrm{c}(\mathrm{V}, \mathrm{V})=2$, then V is isomorphic to a direct sum of two non-isomorphic irreducible representations, and if $c(V, V)=3$, then V is isomorphic to a direct sum of three non-isomorphic irreducible representations. Indeed, the equation $1=a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}$ has the only positive solution $k=1, a_{1}=1$, the equation $2=a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}$ has the only positive solution $k=2, a_{1}=a_{2}=1$, the equation $3=a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}$ has the only positive solution $k=3, a_{1}=a_{2}=a_{3}=1$.

Proposition 1. For every group G, we have

$$
\mathrm{c}\left(\mathrm{~V}_{\mathrm{l}}, \mathrm{~V}_{\mathrm{l}}\right)=\# \mathrm{G}
$$

Proof. In general, a linear map $\mathrm{T}: \mathrm{V}_{\mathrm{l}} \rightarrow \mathrm{V}_{\mathrm{l}}$ is given by a $\# \mathrm{G} \times \# \mathrm{G}$-matrix \mathcal{A} with entries $\mathrm{a}_{\mathrm{g}_{1}, g_{2}}$ such that

$$
\mathrm{T}\left(e_{\mathrm{h}}\right)=\sum_{\mathrm{g} \in \mathrm{G}} \mathrm{a}_{\mathrm{g}, \mathrm{~h}} e_{\mathrm{g}}
$$

Let us examine the condition $T \rho_{l}(k)=\rho_{l}(k) T$. We have

$$
T \rho_{l}(k)\left(e_{h}\right)=T\left(e_{k h}\right)=\sum_{g \in G} a_{g, k h} e_{g}
$$

and

$$
\rho_{l}(k) T\left(e_{h}\right)=\rho_{l}(k) \sum_{g \in G} a_{g, h} e_{g}=\sum_{g \in G} a_{g, h} e_{k g}=\sum_{g^{\prime}=k \boldsymbol{g} \in G} a_{k^{-1} g^{\prime}, h} e_{g^{\prime}}
$$

We conclude that in order for T to be a homomorphism, we must have

$$
a_{g, k h}=a_{k^{-1}} g, h
$$

for all g, h, k, or replacing g by $k g$,

$$
a_{k g, k h}=a_{g, h}
$$

or in other words $a_{g, h}$ only depends on $g^{-1} h$, since putting $k=g^{-1}$, we see that $a_{e, g^{-1} h}=a_{g}$,h. This means that the intertwining number is equal to the number of choices for $g^{-1} h$, that is $\# G$.

Example 2. Let us apply the previous result for $G=S_{3}$ and complex representations. We have $c\left(V_{l}, V_{l}\right)=6$, and the only two ways to represent 6 as a sum of squares is either have $6=1+1+1+1+1+1$ or $6=1+1+4$. In the former case, V_{l} must be a sum of six non-isomorphic representations, and since V_{l} is six-dimensional, we conclude that all those representations are one-dimensional. But we already know that there are just two different one-dimensional representations, so it is impossible. We conclude that $V_{l} \simeq V_{1} \oplus V_{2} \oplus V_{3} \oplus V_{3}$, where V_{1}, V_{2}, and V_{3} are three non-isomophic representations.
Remark 2. In fact, the space $\operatorname{Hom}_{G}\left(V_{l}, V_{l}\right)$ has a basis $\rho_{r}(g), g \in G$: these linear maps are clearly homomorphisms of representations, and linearly independent by inspections.

We shall see in one of the next classes that every irreducible representation (V, ρ) of G is isomorphic to a direct summand of $\left(V_{l}, \rho_{l}\right)$, and the multiplicity of such a summand is $\operatorname{dim}(V)$. This implies that $\operatorname{dim}(\mathrm{V})<\sqrt{\# \mathrm{G}}$, which already makes irreducible representations much more manageable than the regular representation.

