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Lecture 5

These notes account for some differences (and misprints) from notes of 2012/13.
The main point today is to start studying representations under the hypothesis of complete reducibility

from the previous class.

Schur’s lemma

The following result holds in a much more general context than just representations of finite groups (as it
should, as we remarked that the definition of a homomorphism is very general).

Theorem 1 (Schur’s Lemma). Let (V, ρ) and (W,τ) be two irreducible representations of G.

1. A homomorphism of representations T : V →W is either zero or an isomorphism.
2. Over an algebraically closed field F, e.g. C a homomorphism of representations T : V → V is a scalar

multiple of the identity map, T = λ Id.

Proof. For the first part, let us note that ker(T) is an invariant subspace of V and Im(T) is an invariant
subspace ofW. Indeed, if v ∈ ker(T), then Tρ(g)v = τ(g)Tv = 0, so ρ(g)v ∈ ker T , and similarly, if w ∈ Im(T),
then w = Tv for some v, and τ(g)w = τ(g)Tv = Tρ(g)v ∈ Im(T).

Because V is irreducible, we conclude that ker(T) = {0} or ker(T) = V. In the former case, T is an injective
map, in the second case T = 0. Because W is irreducible, we conclude that Im(T) = {0} or Im(T) = W. In
the former case, T = 0, in the latter case, T is a surjective map. We conclude that if T 6= 0, then T is both
injective and surjective, therefore bijective. A bijective map is invertible, so is an isomorphism.

For the second part, let us note that over an algebraically closed field, every linear transformation has an
eigenvalue. Let λ be an eigenvalue of T . Then T −λ Id is not invertible, and hence must be equal to zero.

Intertwining numbers

A very useful invariant of representation theory is the intertwining number of two representations.

Definition 1. Let (V, ρ) and (W,τ) be two representations of G. The set HomG(V,W) of all homomorphisms
of representations T : V → W is clearly a subspace in the vector space of all linear maps Hom(V,W). The
dimension of this subspace is called the intertwining number of V and W and is denoted by c(V,W).

Example 1. Schur’s Lemma essentially states that for two irreducible representations over an algebraically
closed field we have c(V,W) = 0 if these representations are not isomorphic, and c(V,W) = 1 if these
representations are isomorphic.

Theorem 2. Suppose that the ground field is algebraically closed. Let V1, . . . , Vk be several pairwise non-
isomorphic representations of G, and let V '

⊕k
i=1 V

⊕ai

i , W '
⊕k

i=1 V
⊕bi

i . Then

c(V,W) = a1b1 + a2b2 + · · ·+ akbk.
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Proof. A linear map T : V →W is made of “blocks”, Tpq corresponding to inclusion of the p-th of the direct
summands into V, applying the map T on that summand, and projecting onto the q-th of the direct summands
in W. Each of these blocks is a homomorphism of representations, since it is made of homomorphisms (the
original map T , inclusions and projections). Each of the summands is irreducible, so by Schur’s Lemma,
each block is zero or a scalar, depending on whether the corresponding summands are isomorphic. For each
i, there are aibi pairs of summands which both are isomorphic to Vi, and each such pair contributes 1 to
the total dimension, since there is just an arbitrary scalar to choose for the corresponding block. Altogether
the dimension of the vector space is equal to a1b1 + a2b2 + · · ·+ akbk, as required.

Remark 1. In particular, if V = W, we get c(V,V) = a21 + a22 + · · · + a2k. This means that if c(V,V) = 1,
then V is irreducible, if c(V,V) = 2, then V is isomorphic to a direct sum of two non-isomorphic irreducible
representations, and if c(V,V) = 3, then V is isomorphic to a direct sum of three non-isomorphic irreducible
representations. Indeed, the equation 1 = a21 + a22 + · · · + a2k has the only positive solution k = 1, a1 = 1,
the equation 2 = a21 + a22 + · · · + a2k has the only positive solution k = 2, a1 = a2 = 1, the equation
3 = a21 + a

2
2 + · · ·+ a2k has the only positive solution k = 3, a1 = a2 = a3 = 1.

Proposition 1. For every group G, we have

c(Vl, Vl) = #G

Proof. In general, a linear map T : Vl → Vl is given by a #G×#G-matrix A with entries ag1,g2
such that

T(eh) =
∑
g∈G

ag,heg.

Let us examine the condition Tρl(k) = ρl(k)T . We have

Tρl(k)(eh) = T(ekh) =
∑
g∈G

ag,kheg

and
ρl(k)T(eh) = ρl(k)

∑
g∈G

ag,heg =
∑
g∈G

ag,hekg =
∑

g ′=kg∈G

ak−1g ′,heg ′ .

We conclude that in order for T to be a homomorphism, we must have

ag,kh = ak−1g,h

for all g, h, k, or replacing g by kg,
akg,kh = ag,h,

or in other words ag,h only depends on g−1h, since putting k = g−1, we see that ae,g−1h = ag,h. This
means that the intertwining number is equal to the number of choices for g−1h, that is #G.

Example 2. Let us apply the previous result forG = S3 and complex representations. We have c(Vl, Vl) = 6,
and the only two ways to represent 6 as a sum of squares is either have 6 = 1+1+1+1+1+1 or 6 = 1+1+4.
In the former case, Vl must be a sum of six non-isomorphic representations, and since Vl is six-dimensional,
we conclude that all those representations are one-dimensional. But we already know that there are just two
different one-dimensional representations, so it is impossible. We conclude that Vl ' V1 ⊕ V2 ⊕ V3 ⊕ V3,
where V1, V2, and V3 are three non-isomophic representations.

Remark 2. In fact, the space HomG(Vl, Vl) has a basis ρr(g), g ∈ G: these linear maps are clearly
homomorphisms of representations, and linearly independent by inspections.

We shall see in one of the next classes that every irreducible representation (V, ρ) of G is isomorphic
to a direct summand of (Vl, ρl), and the multiplicity of such a summand is dim(V). This implies that
dim(V) <

√
#G, which already makes irreducible representations much more manageable than the regular

representation.
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