MA3413: Group Representations I
 Tutorial questions, February 11, 2015

The main goal of this tutorial is to describe characters of all complex irreducible representations of S_{4}. We already know that there are two onedimensional representations, the trivial representation and the sign representation.

1. Describe conjugacy classes of S_{4}.
2. Recall that the representation of S_{4} in \mathbb{C}^{4} by permutations of basis vectors is isomorphic to a direct sum of the trivial representation and a three-dimensional irreducible representation, that we shall denote by (V, ρ). Compute the character of V.
3. Show that the representation $(\mathrm{V}, \rho \otimes \operatorname{sign})$ where each element g acts by $\operatorname{sign}(\mathrm{g}) \rho(\mathrm{g})$ is irreducible and not isomorphic to (V, ρ).
4. Find a surjective homomorphism from S_{4} to S_{3}. Explain how to use it to construct a two-dimensional irreducible representation U .
5. Write down the character table for S_{4}.
6. (If there is time left) Show that V is an irreducible representation of the group A_{4} of even permutations of four elements, and describe all other complex irreducible representations of \boldsymbol{A}_{4} and their characters.
