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Implicitisation

A curve in (x , y)-plane is given parametrically by

x(t) = 2t − 4t3,

y(t) = t2 − 3t4.

Let us use Gröbner bases to find a polynomial P(x , y) such that
P(x(t), y(t)) = 0.
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Implicitisation
To eliminate t from these parametric equations, we consider the lex

ordering with t > x > y , and compute a Gröbner basis of the ideal
I = (x − 2t + 4t3, y − t2 + 3t4); it is

2t2 − 3tx + 4y ,

9tx2 − 8ty − 2t − 12xy + x ,

24txy − 2tx + 3x2 − 32y2 − 8y ,

192ty2 + 32ty − 4t + 27x3 − 120xy + 2x ,

27x4 − 144x2y − 4x2 + 256y3 + 128y2 + 16y

so we may take P(x , y) = 27x4 − 144x2y − 4x2 + 256y3 + 128y2 + 16y .

Note that the Gröbner basis contains the element 2t2 − 3tx + 4y where
the coefficient of the highest power of t is nonzero, so the Extension
Theorem guarantees that over an algebraically closed field any common
root (x , y) of the elimination ideal I1 = (P(x , y)) extends to a root
(t, x , y) of I , so we can guarantee that every complex solution corresponds
to some value of t.
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Implicitisation

Suppose that we look for that curve over the real numbers. Is it true that
every point corresponds to some value of the parameter t?

The second element in the Gröbner basis is 9tx2 − 8ty − 2t − 12xy + x , so
if some triple (t0, x0, y0) solves our equations, then

t0(9x20 − 8y0 − 2)− 12x0y0 + x0 = 0.

If 9x20 − 8y0 − 2 6= 0, we have

t =
12x0y0 − x0

9x20 − 8y0 − 2
,

so if x0 and y0 are real, t0 is also real.
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Implicitisation
If 9x20 − 8y0 − 2 = 0, the equation

t0(9x20 − 8y0 − 2)− 12x0y0 + x0 = 0

also forces 12x0y0 − x0 = 0, so x0 = 0 or y0 = 1
12 . Substituting each of

these into 9x20 − 8y0 − 2 = 0, we get three pairs which we have to examine

more carefully: (0,−1
4) and (±2

√
2

3
√
3
, 1
12). For those, we look at the first

element of the Gröbner basis, 2t2 − 3tx + 4y . Substituting these pairs, we
obtain the polynomials

2t2 − 1,

2t2 +
2
√

2√
3
t +

1

3
= (t
√

2 +
1√
3

)2,

2t2 − 2
√

2√
3
t +

1

3
= (t
√

2− 1√
3

)2.

All these polynomials have only real roots, so the corresponding values of t
are always real.
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Conditional extrema
Suppose that we would like to minimize (a− c)2 + (b − d)2 given that
ab = 4 and c2 + 4d2 = 4. In more geometric terms, we would like to find
the minimal distance between the hyperbola xy = 4 and the ellipse
x2 + 4y2 = 4 in R2.

The Lagrange multipliers method suggests that we
should look at the critical points of the function

F (a, b, c , d , α, β) = (a− c)2 + (b − d)2 − α(ab − 4)− β(c2 + 4d2 − 4).

We have

∂aF = 2(a− c)− αb,
∂bF = 2(b − d)− αa,
∂cF = 2(c − a)− 2βc,

∂dF = 2(d − b)− 8βd ,

∂αF = ab − 4,

∂βF = c2 + 4d2 − 4.

Vanishing of these is precisely the system of equations we should solve.
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Conditional extrema
Computing a Gröbner basis for the LEX ordering with
α > β > a > b > c > d using Singular, we get a Gröbner basis
consisting of the elements

81d16−324d14+3310d12−5796d10+13653d8−9004d6+2484d4−324d2+16,

188352c + 4742469d15−18574191d13 + 192181159d11−323074301d9+

769803276d7 − 459193664d5 + 97662148d3 − 7408656d ,

53680320b − 1638275463d15 + 6225285213d13 − 65700922861d11+

104081012935d9−255308307124d7+131039721440d5−24029768972d3+

1779004976d ,

and, on the next slide,
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Conditional extrema

71573760a− 490312683d15 + 1953288513d13 − 20013783641d11+

34789074995d9 − 82428604004d7 + 53519167360d5 − 15225418492d3+

1552217776d ,

214721280β + 1638275463d14 − 6225285213d12 + 65700922861d10−
104081012935d8+255308307124d6−131039721440d4+24029768972d2−

1832685296,

107360640α + 1679218371d14 − 6538493421d12 + 67910186537d10−
112888398095d8+270453063428d6−157077454960d4+32607369964d2−

2435055472.
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71573760a− 490312683d15 + 1953288513d13 − 20013783641d11+

34789074995d9 − 82428604004d7 + 53519167360d5 − 15225418492d3+

1552217776d ,

214721280β + 1638275463d14 − 6225285213d12 + 65700922861d10−
104081012935d8+255308307124d6−131039721440d4+24029768972d2−

1832685296,

107360640α + 1679218371d14 − 6538493421d12 + 67910186537d10−
112888398095d8+270453063428d6−157077454960d4+32607369964d2−

2435055472.
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Conditional extrema

We note that the first equation

81d16 − 324d14 + 3310d12 − 5796d10+

13653d8 − 9004d6 + 2484d4 − 324d2 + 16 = 0,

is an equation in d only, and the further equations allow to reconstruct
other unknowns uniquely, using d .

First of all, this equation factors as

(d4− d2 + 4)(81d12− 243d10 + 2743d8− 2081d6 + 600d4− 80d2 + 4) = 0

The first factor has no real roots, the second has roots (approximately)

−.5814060238,−.3478340245, .3478340245, .5814060238.
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This leads to the solutions (a, b, c , d) being

(−2.39097848,−1.67295522,−1.62722710,−.5814060238),

(1.722790175, 2.321814961,−1.87511226,−.3478340245),

(−1.722790175,−2.321814961, 1.87511226, .3478340245),

(2.39097848, 1.67295522, 1.62722710, .5814060238)

and to the values of (a− c)2 + (b− d)2 being 1.774795818, 20.07192764,
20.07192764, 1.774795818.

At the oral entrance exam to the maths department of the Moscow State
University in 1978, some Jewish students were offered the following
problem:

Given that ab = 4 and c2 + 4d2 = 4, show that
(a− c)2 + (b − d)2 ≥ 1.6.
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A particular system of equations
Classification of “nonsymmetric operads” leads to looking for common
zeros of the following 19 polynomials expressed on 2 pages:

x5x1 + x4x1 + 2x3x1 − x2x1 − 2x21 − x6 − x4 + x2 + x1,

2x6x1 + x4x1 − 2x3x1 − x2x1 + 2x21 + 2x6 + x4 − x2,

x22 + x4x1 + x2x1 + x21 + x2 + x1,

2x3x2 + x4x1 + 2x3x1 − x2x1 − x4 + x2 + 2x1,

x4x2 + x4x1 + x2,

x5x2 − x3x1 + x21 + x4,

2x6x2 + x4x1 + 2x3x1 + x2x1 − x4 + x2 + 2x1,

2x4x3 − x4x1 + 2x3x1 − x2x1 − 2x21 − x4 + x2,

2x5x3 + x4x1 + 2x3x1 − x2x1 − 2x21 − 2x6 − x4 + x2 + 2x1,

x6x3 + x4x1 + x21 + x6 + x1,

x24 − x4x1 − 2x3x1 + x2x1 + x21 + x4 − x1,
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A particular system of equations

x5x4 + 2x4x1 + x3x1 − x2x1 + x2 + x1,

2x6x4 + x4x1 + 2x3x1 − x2x1 − 2x21 − x4 + x2,

2x6x5 − x4x1 − 2x3x1 + x2x1 + 2x21 + x4 − x2,

x26 + x4x1 + x3x1 + x6 + x1,

x2x
2
1 + x31 − x4x1 − 2x3x1 + 2x21 + x4 − x2 − x1,

2x3x
2
1 − 2x31 − x4x1 − 2x3x1 + 3x2x1 + 4x21 − x4 + x2 + 2x1,

x4x
2
1 + x31 − x2x1 + x4 − x2 − x1,

2x23x1 − 2x31 − x4x1 + 5x2x1 + 4x21 − 3x4 + 3x2 + 4x1.

This is a Gröbner basis for the glex order with
x6 > x5 > x4 > x3 > x2 > x1; the lex Gröbner basis is quite disastrous,
and consists of polynomials with much larger coefficients.
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This is a Gröbner basis for the glex order with
x6 > x5 > x4 > x3 > x2 > x1; the lex Gröbner basis is quite disastrous,
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A particular system of equations

First, we note that powers of x1 do not appear as leading terms, so we
should expect infinitely many solutions.

Note that the sum of the elements

2x6x4 + x4x1 + 2x3x1 − x2x1 − 2x21 − x4 + x2,

2x6x5 − x4x1 − 2x3x1 + x2x1 + 2x21 + x4 − x2

(elements 13 and 14 of the Gröbner basis above) is 2x6(x5 + x4), and so
we can split the proof into two parts: first, set x6 = 0; second, set
x5 = −x4. In both cases we reduce the number of variables by one.
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Case 1: We set x6 = 0 in the 19 polynomials, and compute the Gröbner
basis of the ideal generated by the resulting polynomials in x1, . . . , x5. This
basis has only 8 elements:

x4 − x2, x1(x1 + x2 + 1), x1(x3 − x1),

x1(x5 + 1), (x2 + x1 + 1)(x2 − x1),

x21 + x2x3 + x1, x2(x5 + 1), x3x5 + x1.

 (1)

The second, third, and fourth elements have x1 as a factor, and so we can
split again into two cases: either x1 = 0, or x2 = −x1 − 1 and x3 = x1 and
x5 = −1.
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Case 1.1: We set x1 = 0 in the polynomials (1) and recompute the
Gröbner basis in x2, . . . , x5 which consists of these five polynomials:

x4 − x2, x2(1 + x2), x3x2, x2(x5 + 1), x5x3.

From this we see that either x2 = 0 or x2 = −1; in the former case, x4 = 0
and either x3 is free or x5 is free but not both and the other is zero; in the
latter case, x3 = 0, x4 = −1, x5 = −1. This produces three solutions:

[x1, . . . , x6] =


[0, 0,X , 0, 0, 0] (X ∈ F)

[0, 0, 0, 0,X , 0] (X ∈ F)

[0,−1, 0,−1,−1, 0]

(2)

Case 1.2: We set x2 = −x1 − 1, x3 = x1, x5 = −1 in (1) and recompute
the Gröbner basis in x1, x4; the ideal is principal with generator
x4 + x1 + 1. We obtain this solution

[x1, . . . , x6] = [X ,−X − 1,X ,−X − 1,−1, 0] (X ∈ F). (3)

Note that for X = 0 we obtain the previous solution [0,−1, 0,−1,−1, 0].
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Case 2: We set x5 = −x4 in the 19 polynomials, and compute the
Gröbner basis of the ideal generated by the resulting polynomials in
x1, . . . , x4, x6. This Gröbner basis consists of the following 14 elements:

2x3x1 − x2x1 − 2x21 − x6 − x4 + x2 + x1,

2x4x1 − x2x1 − x6 + x4 + 3x2 + x1, 4x6x1 − 3x2x1 + 3x6 − x4 − 3x2 + x1,

2x22 + 3x2x1 + 2x21 + x6 − x4 − x2 + x1,

4x3x2 + x2x1 + 4x21 + 3x6 − x4 − 3x2 + x1,

2x4x2 + x2x1 + x6 − x4 − x2 − x1,

4x6x2 + 5x2x1 + 4x21 + 3x6 − x4 − 3x2 + x1,

4x4x3 − x2x1 + x6 + x4 + 3x2 − x1,

2x6x3 + x2x1 + 2x21 + 3x6 − x4 − 3x2 + x1,

2x24 − x2x1 − 2x21 − 3x6 + x4 + 5x2 + x1,

4x6x4 + x2x1 + 3x6 − x4 − 3x2 − 3x1, x26 + x2x1 + x21 + 2x6 − 2x2,

4x31 − 13x2x1 − 4x21 + x6 + 9x4 − 5x2 − 9x1,

4x2x
2
1 + 7x2x1 + 4x21 − 7x6 − 7x4 + 11x2 + 11x1.
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Analyzing this Gröbner basis we see that there are equations where the
variables x4 and x6 appear among linear terms with some scalar
coefficients, and do not appear in other terms. This suggests that we
should eliminate these variables from our equations, so that only variables
x1, x2, and x3 remain. This leads to a system of the nine polynomials

x6 − x1x3 + x22 + 2x1x2 + 2x21 − x2,

x4 − x22 − x3x1 − x2x1 − x1,

(2x2 + x1)(x3 − x2 − x1),

2x31 + 4x22 + 5x3x1 − 3x2x1 − 3x21 − 2x2,

2x2x
2
1 − 7x3x1 + 7x2x1 + 9x21 + 2x2 + 2x1,

x3x
2
1 + 2x22 + x3x1 + x21 + x1,

2x22x1 − 2x22 + 5x3x1 − 5x2x1 − 7x21 − 2x1,

x23x1 + x22 + x3x1 + x21 + x2 + x1,

2x32 + 2x22 − x3x1 + x2x1 + x21 − 2x2.

Examining the polynomial (2x2 + x1)(x3 − x2 − x1), we see that either
x1 = −2x2 or x1 = x3 − x2, so we again split into two cases.

341D: Gröbner bases 17 / 22



Case 2.1: We substitute x1 = −2x2 in the last six polynomials of the set
above and compute the reduced Gröbner basis, obtaining
{ x2(x2 − 1), x2(x3 + 2) }, for which the zero set is

[x2, x3] ∈ { [0,X ] | X ∈ F } ∪ { [1,−2] }.
Solving backwards for the values of the other variables, we obtain

[x1, . . . , x6] = [0, 0,X , 0, 0, 0], [−2, 1,−2, 1,−1, 0].

The first has already appeared in (2), and the second is the special case
X = −2 of (3), so there are no new solutions.

Case 2.2: We substitute x1 = x3 − x2 in the last six polynomials of the
set above and compute the reduced Gröbner basis, obtaining these four
polynomials:

x2(x22 + x2 − 1),

x3x
2
2 − x23 + 2x3x2 − x22 − x3,

x23x2 − x23 + 2x3x2 − 2x22 − x3 + x2,

x33 + x23 − x3x2 + x2.

The first of these implies that either x2 = 0 or x22 + x2 − 1 = 0.

341D: Gröbner bases 18 / 22



Case 2.1: We substitute x1 = −2x2 in the last six polynomials of the set
above and compute the reduced Gröbner basis, obtaining
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Case 2.2.1: If x2 = 0, we find that the resulting polynomials generate the
principal ideal of multiples of x3(x3 + 1). Working backward from x3 = 0
we obtain only the solution [0, 0, 0, 0, 0, 0]. Working backward from
x3 = −1 we obtain a new solution:

[x1, . . . , x6] = [−1, 0,−1, 0, 0,−1]. (4)
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Case 2.2.2: If x22 + x2 − 1 = 0, we see that x2 = −φ, where φ = −1±
√
5

2 is
a root of the polynomial t2 − t − 1. Substituting this value of x2 in
elements above, we obtain the following polynomials:

−x23 − φx3 + (−φ− 1),

(−φ− 1)x23 + (−2φ− 1)x3 + (−3φ− 2),

x33 + x23 + φx3 − φ.

By a direct computation,

(−φ− 1)x23 + (−2φ− 1)x3 + (−3φ− 2) = (φ+ 1)(−x23 − φx3 + (−φ− 1)),

x33 + x23 + φx3 − φ = (−x23 − φx3 − (φ+ 1))(−x3 − 1 + φ),

so the corresponding ideal is generated by the polynomial

F = x23 + φx3 + (φ+ 1).
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In fact, we can rewrite F = x23 + φx3 + (φ+ 1) as

F = x23 + φx3 + φ2,

which instantly shows that x3
φ = ω is a root of the polynomial t2 + t + 1, a

primitive cube root of unity. Furthermore, we recall that throughout Case
2.2 we have x1 = x3 − x2, so x1 = ωφ+ φ = φ(ω + 1) = −ω2φ, Next, we
substitute the values that we found in the first two polynomials of the set
above, obtaining

x6 = −φ2ω3 − φ2 − 2φ2ω2 − 2φ2ω4 − φ = −φ, (5)

x4 = φ2 − φ2ω3 + φ2ω2 − φω2 = (φ2 − φ)ω2 = ω2. (6)

Finally, since throughout Case 2 we have x5 = −x4, we conclude that

x5 = −ω2.

Overall, in this case we end up with the four points

[ω2φ,−φ, ωφ, ω2,−ω2,−φ],

where ω is a root of the polynomial t2 + t + 1 and φ is a root of the
polynomial t2 − t − 1.
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