MA341D Answers and solutions to homework assignment 1

1. (a) The leading monomials of these are x^{2} and $x^{5} y z^{4}$, respectively, with coefficients 1 and -3 , so the S -polynomial is

$$
\begin{aligned}
& x^{3} y z^{4}\left(2 x+3 y+z+x^{2}-z^{2}+z^{3}\right)-\frac{1}{-3}\left(2 x^{2} y^{8}-3 x^{5} y z^{4}+x y z^{3}-x y^{4}\right)= \\
& \frac{2}{3} x^{2} y^{8}+\frac{1}{3} x y z^{3}-\frac{1}{3} x y^{4}+2 x^{4} y z^{4}+3 x^{3} y^{2} z^{4}+x^{3} y z^{5}-z^{3} y z^{6}+x^{3} y z^{7} .
\end{aligned}
$$

(b) The leading monomials of these are z^{3} and $x^{5} y z^{4}$, respectively, with coefficients 1 and -3 , so the S -polynomial is

$$
\begin{aligned}
& x^{5} y z\left(2 x+3 y+z+x^{2}-z^{2}+z^{3}\right)-\frac{1}{-3}\left(2 x^{2} y^{8}-3 x^{5} y z^{4}+x y z^{3}-x y^{4}\right)= \\
& \frac{2}{3} x^{2} y^{8}+\frac{1}{3} x y z^{3}-\frac{1}{3} x y^{4}+2 x^{6} y z+3 x^{5} y^{2} z+x^{5} y z^{2}+x^{7} y z-x^{5} y z^{3} .
\end{aligned}
$$

2. In this question, we just give answers for the reduced Gröbner bases; these should serve you for checking your computations.
(a) $x y^{2} z-x y z, x^{2} y^{2}-z, x^{2} y z-z^{2}, y z^{2}-z^{2}, x^{2} z^{2}-z^{3}$.
(b) $x^{2} y+x z+y^{2} z, x z^{2}-y z, x y z-y^{2}, y^{3}+y^{2} z^{3}+y z^{2}, x y^{2}+y^{2} z^{2}+y z$.
(c) $x^{2} y-y, y^{2}+\frac{1}{2} z, z^{2}+\frac{1}{2} z, x z+z$.
3. (a) Let us use the lex ordering with $z>x>y$. Then the leading monomials of the generators of the ideal are z and x^{3}, which have no common divisors, so they form a Gröbner basis. The normal form of $x y^{3}-z^{2}+y^{5}-z^{3}$ can be computed by following steps of long division:

$$
\begin{aligned}
& \quad x y^{3}-z^{2}+y^{5}-z^{3} \rightarrow x y^{3}-z^{2}+y^{5}-z^{3}-z^{2}\left(x^{2} y-z\right)= \\
& =x y^{3}-z^{2}+y^{5}-z^{2} x^{2} y \rightarrow x y^{3}-z^{2}+y^{5}-z^{2} x^{2} y-x^{2} y z\left(x^{2} y-z\right)=x y^{3}-z^{2}+y^{5}-x^{4} y^{2} z \rightarrow \\
& \rightarrow \\
& \rightarrow x y^{3}-z^{2}+y^{5}-x^{4} y^{2} z-x^{4} y^{2}\left(x^{2} y-z\right)=x y^{3}-z^{2}+y^{5}-x^{6} y^{3} \rightarrow x y^{3}-z^{2}+y^{5}-x^{6} y^{3}-z\left(x^{2} y-z\right)= \\
& =x y^{3}+y^{5}-x^{6} y^{3}-x^{2} y z \rightarrow x y^{3}+y^{5}-x^{6} y^{3}-x^{2} y z-x^{2} y\left(x^{2} y-z\right)=x y^{3}+y^{5}-x^{6} y^{3}-x^{4} y^{2} \rightarrow \\
& \quad \rightarrow x y^{3}+y^{5}-x^{6} y^{3}-x^{4} y^{2}-x^{3} y^{3}\left(-x^{3}+y\right)=x y^{3}+y^{5}-x^{4} y^{2}-x^{3} y^{4} \rightarrow \\
& \rightarrow \\
& \rightarrow x y^{3}+y^{5}-x^{4} y^{2}-x^{3} y^{4}-y^{4}\left(-x^{3}+y\right)=x y^{3}-x^{4} y^{2} \rightarrow x y^{3}-x^{4} y^{2}-x y^{2}\left(-x^{3}+y\right)=0 .
\end{aligned}
$$

We see that the normal form is zero, so the polynomial is in the ideal.
(b) Let us use the lex ordering with $y>x>z$. Computing a Gröbner basis of the ideal in question, we get $y-z, 2 z^{2}+z, x z-z$. The normal form of $x^{3} z-2 y^{2}$ can be
computed by following steps of long division:

$$
\begin{aligned}
& x^{3} z-2 y^{2} \rightarrow x^{3} z-2 y^{2}-x^{2}(x z-z)=x^{2} z-2 y^{2} \rightarrow x^{2} z-2 y^{2}-x(x z-z)= \\
& \quad=x z-2 y^{2} \rightarrow x z-2 y^{2}-(x z-z)=z-2 y^{2} \rightarrow z-2 y^{2}+2 y(y-z)= \\
& \quad=z-2 y z \rightarrow z-2 y z+2 z(y-z)=z-2 z^{2} \rightarrow z-2 z^{2}+\left(2 z^{2}+z\right)=2 z .
\end{aligned}
$$

We see that the normal form is nonzero, so the polynomial is not in the ideal. The normal form is the normal monomial z with the coefficient 2 .
4. Let us compute the reduced Gröbner basis for the ideal generated by $p^{5}-n, p^{10}-d$, $p^{25}-q$ in $\mathbb{C}[p, n, d, q]$ with respect to the glex order. That Gröbner basis consists of the polynomials $p^{5}-n, n d^{2}-q, d^{3}-n q$, and $n^{2}-d$ (we omit the calculations). Note that when computing the normal form relative to that Gröbner basis using iterated long division, every monomial is at each stage is replaced by a monomial of a smaller degree, thus the exponents of the normal form of p^{n} give the most economic way to pay n cents using the given coins. Performing the long division for p^{167}, we obtain the normal form $p^{2} n d q^{6}$, meaning we should use two pennies, a nickel, a dime and six quarters.

