MA341D Answers and solutions to homework assignment 2

1. The Magma commands
```
Q := RationalField();
P<x,y,z> := PolynomialRing(Q, 3, "lex");
S:=[x*y-z^2-z,y*z-x^2-x,x*z-y^2+y];
GroebnerBasis(S);
```

produce the following Gröbner basis:

$$
\begin{gathered}
x^{2}+x-z^{2}-z, \\
x y-z^{2}-z, \\
x z, \\
y^{2}-y, \\
y z-z^{2}-z, \\
z^{3}+z^{2} .
\end{gathered}
$$

From the last equation, $z=0$ or $z=-1$. If $z=0$, the equations become $x^{2}+x=0$, $x y=0, y^{2}-y=0$, leading to the solutions $(0,0,0),(-1,0,0)$, and $(0,1,0)$. If $z=-1$, the equations become $x^{2}+x=0, x y=0,-x=0, y^{2}-y=0,-y=0$, leading to the solution $(0,0,-1)$. Those four solutions together form the complete solution set.
2. The Magma commands

```
Q := RationalField();
P<x,y,z> := PolynomialRing(Q, 3, "lex");
S:=[x*y-z^2-z,y*z-x^2-x,x*z-y^2-y];
GroebnerBasis(S);
```

produce the following Gröbner basis:

$$
\begin{gathered}
x^{2}+x-y z, \\
x y-z^{2}-z, \\
x z+y z+z^{2}+z, \\
y^{2}+y z+y+z^{2}+z .
\end{gathered}
$$

This means that the elimination ideal I_{2} is $\{0\}$. Using the Extension Theorem, we conclude that since there is a polynomial in our Gröbner basis with the leading term y^{2}, every z can be extended to a solution (y, z) to the elimination ideal $I_{1}=\left(y^{2}+y z+y+z^{2}+z\right)$. Moreover, since the discriminant of $y^{2}+y z+y+z^{2}+z$ as a polynomial in y is $(1+z)(1-3 z)$, for each value of z except for -1 and $1 / 3$ we can find two distinct values of y, for $z=-1$ we have $y=0$, and for $z=1 / 3$ we have $y=-2 / 3$. Furthermore, since there is a polynomial with the leading term x^{2}, every solution (y, z) to I_{1} extends to a solution (x, y, z). If
$z \neq 0$, the third equation shows that there is only one solution $x=-(y+z+1)$. If $z=0$, we should look at common roots of the polynomials become

$$
\begin{gathered}
x^{2}+x, \\
x y, \\
y^{2}+y .
\end{gathered}
$$

which are $(0,0),(-1,0)$ and $(0,-1)$. Altogether the solution set can be described as

$$
\left\{(0,0,0),(-1,0,0),(0,-1,0),(-y-z-1, y, z): y^{2}+y z+y+z^{2}+z=0, z \neq 0\right\}
$$

or if we note that the second and the third point are precisely the values of the third point for $z=0$,

$$
\left\{(0,0,0),(-y-z-1, y, z): y^{2}+y z+y+z^{2}+z=0\right\} .
$$

3. (a) We introduce two new variables a and b, and look for the extremal points of the function

$$
F(x, y, z, a, b)=\left(x^{3}+y^{3}+z^{3}\right)-a(x+y+z)-b\left(x^{2}+y^{2}+z^{2}-1 / 2\right) .
$$

Those extremal points are common zeros of $\partial_{x} F=3 x^{2}-2 b x-a, \partial_{y} F=3 y^{2}-2 b y-a$, $\partial_{z} F=3 z^{2}-2 b z-a, \partial_{a} F=-(x+y+z), \partial_{b} F=-\left(x^{2}+y^{2}+z^{2}-1 / 2\right)$.
(b) The Magma commands

```
Q := RationalField();
P<a, b, x, y, z> := PolynomialRing(Q, 5, "lex");
S := [
x+y+z,
x^2+y^2+z^2-1/2,
3*x^2-b*2*x-a,
3*y^2-b*2*y-a,
3*z^2-b*2*z-a
];
GroebnerBasis(S);
```

produce the following Gröbner basis:

$$
\begin{gathered}
a-1 / 2, \\
b-9 z^{3}+9 / 4 z, \\
x+y+z, \\
y^{2}+y z+z^{2}-1 / 4, \\
y z^{2}-1 / 12 y+1 / 2 z^{3}-1 / 24 z, \\
z^{4}-5 / 12 z^{2}+1 / 36 .
\end{gathered}
$$

(c) Factorizing the last equation, we get $\left(z^{2}-1 / 3\right)\left(z^{2}-1 / 12\right)=0$. Let us consider those two cases individually.

Suppose $z^{2}-1 / 12=0$. Adding to our lit of polynomials $z^{2}-1 / 12$ and recomputing the Gröbner basis, we get

$$
\begin{gathered}
a-1 / 2 \\
b+3 / 2 z \\
x+y+z \\
y^{2}+y z-1 / 6 \\
z^{2}-1 / 12
\end{gathered}
$$

From the last equation, $z= \pm \frac{1}{2 \sqrt{3}}$. Thus, we have $0=y^{2} \pm \frac{1}{2 \sqrt{3}} y-1 / 6=(y \pm$ $\left.\frac{1}{\sqrt{3}}\right)\left(y \mp \frac{1}{2 \sqrt{3}}\right)$, so the partial solutions (y, z) are

$$
\left(\frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{3}}\right),\left(-\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{3}}\right),\left(-\frac{1}{2 \sqrt{3}},-\frac{1}{2 \sqrt{3}}\right),\left(\frac{1}{\sqrt{3}},-\frac{1}{2 \sqrt{3}}\right),
$$

and from $x+y+z=0$ each of those extends uniquely to a solution, obtaining

$$
\left(-\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{3}}\right),\left(\frac{1}{2 \sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{2 \sqrt{3}}\right),\left(\frac{1}{\sqrt{3}},-\frac{1}{2 \sqrt{3}},-\frac{1}{2 \sqrt{3}}\right),\left(-\frac{1}{2 \sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{2 \sqrt{3}}\right)
$$

Suppose $z^{2}-1 / 3=0$. Adding to our lit of polynomials $z^{2}-1 / 12$ and recomputing the Gröbner basis, we get

$$
\begin{gathered}
a-1 / 2 \\
b-3 / 4 z \\
x+1 / 2 z \\
y+1 / 2 z \\
z^{2}-1 / 3
\end{gathered}
$$

From the last equation, $z= \pm \frac{1}{\sqrt{3}}$. Substituting that into the previous ones, we obtain two more solutions

$$
\left(-\frac{1}{2 \sqrt{3}},-\frac{1}{2 \sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{1}{2 \sqrt{3}}, \frac{1}{2 \sqrt{3}},-\frac{1}{\sqrt{3}}\right) .
$$

4. (a) Note that $x_{i}^{k-1}+x_{i}^{k-2} x_{j}+\cdots+x_{i} x_{j}^{k-2}+x_{j}^{k-1}=0$ if and only if $x_{i}^{k}=x_{j}^{k}$ and $x_{i} \neq x_{j}$. Also, $x_{i}^{k}=1$ for all k, so effectively our polynomials have a common zero if and only if they have a common zero where every coordinate is a k-th root of unity and those roots at positions i and j are different if and only if the vertices i and j are connected with an edge. This is precisely the regular colouring condition.
(b) Let us denote those vertices by a, b, c, d, e, f, g, h clockwise starting from the top one. Then the corresponding polynomials are

$$
\begin{gathered}
a^{3}-1, b^{3}-1, c^{3}-1, d^{3}-1, e^{3}-1, f^{3}-1, g^{3}-1, h^{3}-1, \\
a^{2}+a c+c^{2}, a^{2}+a f+f^{2}, a^{2}+a g+g^{2} \\
b^{2}+b c+c^{2}, b^{2}+b e+e^{2}, b^{2}+b g+g^{2} \\
b^{2}+b h+h^{2}, c^{2}+c d+d^{2}, c^{2}+c h+h^{2} \\
d^{2}+d e+e^{2}, d^{2}+d h+h^{2}, e^{2}+e f+f^{2} \\
e^{2}+e g+g^{2}, f^{2}+f g+g^{2}
\end{gathered}
$$

The Magma commands

```
Q := RationalField();
P<a,b,c,d,e,f,g,h> := PolynomialRing(Q, 8, "lex");
S := [
a^3-1, b^3-1, c^3-1, d^3-1, e^3-1, f^3-1, g^3-1,h^3-1,
a^2+a*c+c^2, a^2+a*f+f^2, a^2+a*g+g^2,
b^2+b*c+c^2, b^2+b*e+e^2, b^2+b*g+g^2, b^2+b*h+h^2,
c^2+c*d+d^2, c^2+c*h+h^2,
d^2+d*e+e^2, d^2+d*h+h^2,
e^2+e*f+f^2, e^2+e*g+g^2,
f^2+f*g+g^2
];
GroebnerBasis(S);
```

output the result

$$
\begin{gathered}
a-h, \\
b+g+h, \\
c-g, \\
d+g+h, \\
e-h, \\
f+g+h, \\
g^{2}+g h+h^{2}, \\
h^{3}-1,
\end{gathered}
$$

which mean that there exists a regular colouring (since otherwise the reduced Gröbner basis would consist of just 1), and that if we choose a colour of the vertex h, then the vertex g has two possible choices of colour, and colours of other vertices are reconstructed uniquely: f is the third colour different from g and h, c is the same as g, a and e the same as h, and both b and d the same as f. Altogether, there are 6 different colourings.

