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1. It is clear that it is a total order. Let us demonstrate that <rp is a well order. Suppose
that there is an infinite decreasing sequence

m1 >rp m2 >rp m3 >rp . . .

The number of occurrences of x0 in these words must stabilise at some point, since it
cannot keep decreasing, so without loss of generality we may assume that they all contain
the same number of occurrences of x0, say l, so that each of these words gets split into
l + 1 parts by the occurrences of x0. Let us look at the first of those l + 1 parts in each
word. They form a non-increasing sequence which therefore must stabilise at some point,
so without loss of generality we may assume that the first parts are all the same. Then
we look at the second parts, they also form a non-increasing sequence, and therefore must
stabilise, etc.

It remains to show that if u <rp v then uw <rp vw and wu <rp wv. If the number of
occurrences of x0 in u is less than the number of occurrences of x0 in v, then the same
holds for uw, vw and wu, wv, so the claim follows. Thus, it is sufficient to look at the
case of a tie, so that

u = u0x0u1x0 · · ·ul−1x0ul and v = v0x0v1x0 · · · vl−1x0vl

with ui, vi being words that do not contain x0. Suppose that w = w0x0w1x0 · · ·wm−1x0wm,
where wi do not contain x0. In this case

uw = u0x0u1x0 · · ·ul−1x0ulw0x0w1x0 · · ·wm−1x0wm,

vw = v0x0v1x0 · · · vl−1x0vlw0x0w1x0 · · ·wm−1x0wm,

wu = w0x0w1x0 · · ·wm−1x0wmu0x0u1x0 · · ·ul−1x0ul,

wv = w0x0w1x0 · · ·wm−1x0wmv0x0v1x0 · · · vl−1x0vl.

To compare uw and vw, we have to look at the sequences

(u0, u1, . . . , ul−1, ulw0, w1, . . . , wm) and (v0, v1, . . . , vl−1, vlw0, w1, . . . , wm).

It follows that if k = min{i : ui 6= vi} < l, then the same comparison proves that uw <rp

vw, and if k = l, then ul < vl implies that ulw0 < vlw0 since we assume < to be a
monomial ordering, therefore uw <rp vw.

To compare wu and wv, we have to look at the sequences

(w0, w1, . . . , wm−1, wmu0, u1, . . . , ul) and (w0, w1, . . . , wm−1, wmu0, u1, . . . , ul).

It follows that if k = min{i : ui 6= vi} > 0, then the same comparison proves that uw <rp

vw, and if k = 0, then u0 < v0 implies that wmu0 < wmv0 since we assume < to be a
monomial ordering, therefore uw <rp vw.

2. (a) At the first stage of Buchberger’s algorithm, there are two nontrivial small common
multiples of leading monomials with each other. The small common multiple y3 of
y2 with itself leads to a zero S-polynomial, and the small common multiple xyxyx of
xyx with itself leads to the S-polynomial

(xyx− yxy)yx− xy(xyx− yxy) = xy2xy − yxy2x.



The remainder of this element after long division by {xyx− yxy, y2− 1} is, by direct
inspection, x2y−yx2. The leading monomial x2y of this element leads to the following
three new small common multiples: x2yx, xyx2y and x2y2. The corresponding S-
polynomials are

(x2y − yx2)x− x(xyx− yxy) = xyxy − yx3

(and the remainder of this element after long division by {xyx−yxy, y2−1, x2y−yx2}
is yx− yx3),

(xyx− yxy)xy − xy(x2y − yx2) = xy2x2 − yxyxy

(and the remainder of this element after long division by {xyx−yxy, y2−1, x2y−yx2}
is x3 − x), and

(x2y − yx2)y − x2(y2 − 1) = x2 − yx2y

(and the remainder of this element after long division by {xyx − yxy, y2 − 1, x2y −
yx2} is 0). Since yx − yx3 is y(x − x3), the self-reduced set obtained from this is
{xyx− yxy, y2 − 1, x2y − yx2, x3 − x}. The element x3 − x forms the following new
small common multiples: x4, x5 (redundant by Triangle Lemma), x3yx, xyx3, x3y.
The corresponding S-polynomials are

(x3 − x)x− x(x3 − x) = 0,

(x3 − x)yx− x2(xyx− yxy) = x2yxy − xyx

(and the remainder of this element after long division by {xyx − yxy, y2 − 1, x2y −
yx2, x3 − x} is 0),

(xyx− yxy)x2 − xy(x3 − x) = xyx− yxyx2

(and the remainder of this element after long division by {xyx − yxy, y2 − 1, x2y −
yx2, x3 − x} is 0), and

(x3 − x)y − x(x2y − yx2) = xyx2 − xy

(and the remainder of this element after long division by {xyx − yxy, y2 − 1, x2y −
yx2, x3 − x} is 0). Thus, the reduced Gröbner basis is {xyx − yxy, y2 − 1, x2y −
yx2, x3 − x}.

(b) Cosets of normal monomials form a basis in F 〈x, y〉/I, so we just need to show that
there are finitely many normal monomials. The normal monomials of degree at most
2 are 1, x, y, x2, xy, yx. Appending anything on the right of x2 or xy we get a
leading term of one of the elements of the Gröbner basis. Appending x on the right
of yx, we get a normal monomial yx2, and appending y we get a normal monomial
yxy. There is nothing we can append on the right of those, so there are no normal
monomials of length 4, and the total number of normal monomials, and hence the
dimension, is 1 + 2 + 3 + 2 = 8.

3. (a) The leading monomials of these relations then are x2, xy, and xz. There are three
small common multiples, x3, x2y and x2z. By a direct computation, the correspond-
ing S-polynomials all have zero remainders, so the generators of our ideal do form a
Gröbner basis. (This can also be established with Magma.)



(b) The normal monomials are those not containing x2, xy, and xz. In other words, a
normal monomial of length n has all letters except for the last one equal to y or z,
and the last letter may be x, y, or z. Altogether, the dimension dn in question is
3 · 2n−1.

4. (a) For ideals generated by monomials, all S-polynomials of generators are always zero,
so xyz is a Gröbner basis of (xyz). Every monomial of degree n that is normal with
respect to xyz is one of the monomials xn, yn, zn, xayb, xazb, yazb (with a + b = n,
a > 0, b > 0, so b = n − a and a = 1, . . . , n − 1). The total number of such is
1 + 1 + 1 + n− 1 + n− 1 + n− 1 = 3n.

(b) This set of generators is not self-reduced; the reduced form of xyz is zyx. The leading
monomials of the self-reduced set of generators are xy, xz, yz, zyx, forming small
common multiples xyz, xzyx, zyxy, zyxz. The corresponding S-polynomials are

(xy − yx)z − x(yz − zy) = xzy − yzx

(and the remainder of this element after long division is zero),

(xz − zx)yx− x(zyx) = −zxyx

(and the remainder of this element after long division is zero),

(zyx)y − zy(xy − yx) = zy2x

(and the remainder of this element after long division is zy2x),

(zyx)z − zy(xz − zx) = zyzx

(and the remainder of this element after long division is zero). Adjoining the new ele-
ment zy2x, we form new small common multiples, establish that most S-polynomials
for those have zero remainders, and the only new nonzero remainder is zy3x, etc.
By induction, it is easy to see that {xy − yx, yz − zy, xz − zx, zykx : k ≥ 1} is the
reduced Gröbner basis.

(c) Suppose that for some monomial ordering J has a finite Gröbner basis G, and that
N is the largest degree of elements in G. We note that J is generated by elements of
two shapes: those of the form m1−m2 where m1 and m2 are monomials, and a single
monomial m = xyz. This, by induction, implies that all S-polynomials computed by
the Buchberger’s algorithm will be of the same kind, either differences of monomials,
or single monomials. Moreover, another easy inductive argument shows that, with
the exception of quadratic relations xy − yx, yz − zy, xz − zx, every element of
the reduced Gröbner basis computed via the Buchberger’s algorithm would involve
all three variables x, y, z. Let us consider the six elements abNc, where a, b, c is
some permutation of x, y, z. By a direct inspection of eight different possibilities,
one of those elements is not divisible by any of the leading terms of the quadratic
elements of J . (Indeed, for the leading terms xy, xz, yz, or xy, zx, yz, we can take
the element zyNx, for the leading terms yx, xz, yz, or yx, xz, zy, the element zxNy,
for the leading terms xy, xz, zy, the element yzNx, for the leading terms xy, zx, zy,
the element yxNz, for the leading terms yx, zx, yz the element xzNy, and for the
leading terms yx, zx, zy the element xyNz.) Also, every divisor of degree at most
N of these elements invoves at most two different generators, and hence it must be
normal, since a non-quadratic leading term involves all three generators. However,
these elements vanish in the quotient, so they cannot be normal, a contradiction.


