Solutions to MA3417 Homework assignment 4

1. (i) In the case $a=b=c=0$, we are essentially dealing with the ideal $I=\left(y^{2}\right)$, after dividing f by $d \neq 0$. Computing dimensions for small $n=0,1,2,3,4$, we get $1,2,3,5,8$, so one suspects Fibonacci numbers. This is easy to prove by induction: a normal monomial of degree n either starts with x, in which case the rest can be an arbitrary normal monomial of degree $n-1$, or starts with y, in which case it must be followed by x which is then followed by an arbitrary normal monomial of degree $n-2$, so $d_{n}=d_{n-1}+d_{n-2}$, and the claim follows.
(ii) In the case $a=b=0, c \neq 0$, we are essentially dealing with an ideal $I=\left(y x+d y^{2}\right)$, after dividing f by $c \neq 0$. For the glex ordering with $x>y$, the leading monomial is $y x$, which does not have nontrivial small common multiples with itself, so $y x+d y^{2}$ forms the reduced Gröbner basis. The normal monomials are $x^{i} y^{j}$, so $d_{n}=n+1$.
(iii) In the case $a=0, b \neq 0$, , we are essentially dealing with an ideal $I=(x y+$ $c y x+d y^{2}$), after dividing f by $b \neq 0$. For the glex ordering with $x>y$, the leading monomial is $x y$, which does not have nontrivial small common multiples with itself, so $x y+c y x+d y^{2}$ forms the reduced Gröbner basis. The normal monomials are $y^{i} x^{j}$, so $d_{n}=n+1$.
2. The leading monomial of $x^{2}+b x y+c y x+d y^{2}$ is x^{2}, which already ensures that the normal monomials of degree 3 are among $x y x, x y^{2}, y x y, y^{2} x$ and y^{3}. Since the cosets of normal monomials form a basis in the quotient, the dimension d_{3} does not exceed 5 . Also, there may be at most one new constraint, arising from the only S-polynomial of degree 3 that is there, the one corresponding to the small common multiple x^{3} of the leading term of f with itself.
Let us compute that S-polynomial. It is

$$
\left(x^{2}+b x y+c y x+d y^{2}\right) x-x\left(x^{2}+b x y+c y x+d y^{2}\right)=(b-c) x y x+c y x^{2}+d y^{2} x-b x^{2} y-d x y^{2} .
$$

The remainder of this after long division by $x^{2}+b x y+c y x+d y^{2}$ is, by a direct computation,

$$
(b-c) x y x+\left(b^{2}-d\right) x y^{2}+\left(d-c^{2}\right) y^{2} x+(b-c) d y^{3} .
$$

If this is equal to zero, $d_{3}=5$. Otherwise, we add one linear dependence between cosets of normal monomials, and $d_{3}=4$.
Note that the remainder is zero whenever the equations $b=c, b^{2}=d, c^{2}=d,(b-c) d=$ 0 are satisfied. All of those follow from $b=c, d=b^{2}$. Thus, for $(b, c, d)=\left(b, b, b^{2}\right)$ we have $d_{3}=5$ and otherwise $d_{3}=4$.
3. In the case $d_{3}=5, f$ forms a reduced Gröbner basis, so d_{n} is equal to the number of monomials of degree n not divisible by x^{2}, which is equal to a Fibonacci number by Problem 1.
4. Suppose $d_{3}=4$. This means that the remainder

$$
(b-c) x y x+\left(b^{2}-d\right) x y^{2}+\left(d-c^{2}\right) y^{2} x+(b-c) d y^{3}
$$

computed in Problem 2 is non-zero. Let us consider two cases.
Case 1: $b \neq c$. In this case, $x y x$ is the leading monomial of that remainder. The only small common multiples of degree 4 are $x y x^{2}$ and $x^{2} y x$; all others give rise to S-polynomials of higher degrees, and this will not affect d_{4}. The corresponding S polynomials are

$$
\begin{array}{r}
\left(x^{2}+b x y+c y x+d y^{2}\right) y x-\frac{1}{b-c} x\left((b-c) x y x+\left(b^{2}-d\right) x y^{2}+\left(d-c^{2}\right) y^{2} x+(b-c) d y^{3}\right) \\
=b x y^{2} x+c y x y x+d y^{3} x-\frac{b^{2}-d}{b-c} x^{2} y^{2}-\frac{d-c^{2}}{b-c} x y^{2} x-d x y^{3}
\end{array}
$$

and

$$
\begin{array}{r}
\frac{1}{b-c}\left((b-c) x y x+\left(b^{2}-d\right) x y^{2}+\left(d-c^{2}\right) y^{2} x+(b-c) d y^{3}\right) x-x y\left(x^{2}+b x y+c y x+d y^{2}\right) \\
=\frac{b^{2}-d}{b-c} x y^{2} x+\frac{d-c^{2}}{b-c} y^{2} x^{2}+d y^{3} x-b x y x y-c x y^{2} x-d x y^{3}
\end{array}
$$

and their remainders after long division by $x^{2}+b x y+c y x+d y^{2}$ and $x y x+\frac{b^{2}-d}{b-c} x y^{2}+$ $\frac{d-c^{2}}{b-c} y^{2} x+d y^{3}$ are both equal to

$$
\left(b^{2}-b c+c^{2}-d\right) x y^{2} x+\left(b^{3}-2 b d+c d\right) x y^{3}+\left(b d+c^{3}-2 c d\right) y^{3} x+d\left(b^{2}-b c+c^{2}-d\right) y^{4} .
$$

This vanishes if and only if all the coefficients $b^{2}-b c+c^{2}-d, b^{3}-2 b d+c d, b d+c^{3}-2 c d$, and $d\left(b^{2}-b c+c^{2}-d\right)$ vanish. Note that if $b^{2}-b c+c^{2}-d=0$ and $b^{3}-2 b d+c d=0$, then

$$
0=b^{3}-2 b\left(b^{2}-b c+c^{2}\right)+c\left(b^{2}-b c+c^{2}\right)=c^{3}-3 c^{2} b+3 c b^{2}-b^{3}=(c-b)^{3} .
$$

Since we assume $b \neq c$, this case is impossible, so there is a nonzero remainder in this case. This implies that the leading monomials of degree up to 4 of the reduced Gröbner basis are $x^{2}, x y x$, and one element of degree 4 that is normal with respect to x^{2} and $x y x$. The number of normal monomials of degree 4 with respect to x^{2} is equal to $8, x y x$ prohibits $x y x y$ and $y x y x$ among those, and one extra monomial prohibits one more element, thus we get $d_{4}=5$ in this case.
Case 2: $b=c$, but $b^{2} \neq d$. In this case, the remainder of the S-polynomial in degree 3 is, in self-reduced form, $x y^{2}-y^{2} x$. By a direct computation, the S-polynomial corresponding to the only new common multiple $x^{2} y^{2}$ of the leading terms has zero remainder, so these two polynomials form the reduced Gröbner basis. The number of normal monomials of degree 4 with respect to x^{2} is equal to $8, x y^{2}$ prohibits $y x y^{2}, x y^{2} x$ and $x y^{3}$ among those, so we get $d_{4}=5$ in this case.

