MA341D Homework assignment 3

Due on March 9, 2018

1. Suppose that $<$ is a monomial ordering on all noncommutative monomials in x_{1}, \ldots, x_{n}. Let us define the recursive path ordering $<_{r p}$ on all noncommutative monomials in x_{0}, x_{1}, \ldots, x_{n} as follows:

- If the number of occurrences of x_{0} in u is less than the number of occurrences of x_{0} in v, then $u<_{r p} v$.
- If there is a tie, that is u and v both have m occurrences of x_{0}, we have factorisations

$$
u=u_{0} x_{0} u_{1} x_{0} \cdots u_{m-1} x_{0} u_{m} \quad \text { and } \quad v=v_{0} x_{0} v_{1} x_{0} \cdots v_{m-1} x_{0} v_{m}
$$

where u_{i}, v_{i} are noncommutative monomials in x_{1}, \ldots, x_{n}. Let $k=\min \left\{i: u_{i} \neq v_{i}\right\}$; we put $u<_{r p} v$ if $u_{k}<v_{k}$.

Show that $<_{r p}$ is a monomial ordering.
2. Let us consider the ideal $I=\left(x y x-y x y, y^{2}-1\right) \subset F\langle x, y\rangle$.
(a) Compute (without using any software) the reduced Gröbner basis of I for the glex ordering with $x>y$.
(b) Use the Gröbner basis you computed to show that the quotient $F\langle x, y\rangle / I$ is finite dimensional, and to compute the dimension of the quotient.
3. Let us consider the ideal $I=\left(x^{2}+y z+z y, y^{2}+x z+z x, z^{2}+x y+y x\right) \subset F\langle x, y, z\rangle$.
(a) Compute (with or without computer software) the reduced Gröbner basis of I for the glex ordering with $x>y>z$.
(b) Describe the normal monomials with respect to the Gröbner basis you computed. How many normal monomials of degree n are there?
4. Let us consider the ideal $I=(x y z) \subset F[x, y, z]$, and the ideal $J=(x y-y x, y z-z y, x z-$ $z x, x y z) \subset F\langle x, y, z\rangle$. Clearly, $F[x, y, z] / I \cong F\langle x, y, z\rangle / J$.
(a) Show that the element $x y z$ forms a Gröbner basis of I. How many normal (commutative) monomials of degree n with respect to $x y z$ are there?
(b) Compute (with or without computer software) the (infinite) reduced Gröbner basis of J for the glex ordering with $x>y>z$.
(c) Show that there does not exist a monomial ordering of noncommutative monomials for which the ideal J has a finite Gröbner basis.

