Mathematical battle
Date: February 20, 2014 (time and venue to be confirmed)
Rules of the battle are available on the webpage of TCD problem solving group (via the http URL http://www.maths.tcd.ie/~vdots/teaching/problemsolving.html). There will be two teams competing in the battle, one from TCD and one from UCD.

1. Find all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(f(x))+f(x)=2 x+9 \quad \text { for all } x \in \mathbb{R}
$$

2. Let $0<x<1$. Compute the sum of the infinite series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{\left\lfloor 2^{n} x\right\rfloor}}{2^{n}}
$$

3. Suppose for a smooth function f on \mathbb{R}^{2} it is true that for each rectangle $A B C D \subset \mathbb{R}^{2}$ we have

$$
f(A)+f(C)=f(B)+f(D)
$$

Show that f is a polynomial of degree at most 2 .
4. Suppose that A and B are two square matrices of the same size 2013×2013 such that $A B=0$. Show that one of the matrices $A+A^{\top}$ and $B+B^{\top}$ is not invertible.
5. Suppose that for two positive integers $a, b \geq 2$, it is known that $a^{n}-1$ is divisible by $b^{n}-1$ for all $n \in \mathbb{N}$. Show that $a=b^{k}$ for some $k \in \mathbb{N}$.
6. Show that every function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ can be represented as a sum of three bijections: for each $x \in \mathbb{Z}$,

$$
f(x)=f_{1}(x)+f_{2}(x)+f_{3}(x)
$$

where $f_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ is a one-to-one correspondence.
7. Let T be a tree, that is, a union of finitely many intervals in the plane which is connected and has no cycles. Let $\mathrm{f}: \mathrm{T} \rightarrow \mathrm{T}$ be continuous. Prove that f has a fixed point.
8. Let $Q(x)$ be a polynomial with integer coefficients. Define the sequence $\left\{a_{n}\right\}_{n \geq 0}$ by $a_{0}=0$ and $a_{n+1}=Q\left(a_{n}\right)$, for all $n \geq 0$. Prove that if there exists $m \geq 1$ such that $a_{m}=0$, then either $a_{1}=0$ or $a_{2}=0$.
9. A sawtooth permutation b_{1}, \ldots, b_{n} of $1,2, \ldots, n$ is a permutation such that $\left(b_{i}-\right.$ $\left.b_{i-1}\right)\left(b_{i}-b_{i+1}\right)>0$ for all $i=2, \ldots, n-1$. Let B_{n} be the number of sawtooth permutations of n elements. Prove that for every $\varepsilon>0$ we have

$$
B_{n}<\frac{n!}{\left(\frac{\pi}{2}-\varepsilon\right)^{n}}
$$

for sufficiently large n.
10. Let $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{4 n} \in \mathbb{R}^{3}$ be in generic position (no 4 points are coplanar). Prove that one can partition $P_{1}, P_{2}, \ldots, P_{4 n}$ into vertices of mutually non-intersecting tetrahedra.

