Problem solving methods 1: numbers and polynomials (16/10/2012)

1. Compute the sums $\sum_{k=0}^{n}\binom{n}{k}, \sum_{k=0}^{n} k\binom{n}{k}, \sum_{k=0}^{n} k^{2}\binom{n}{k}, \sum_{k=0}^{n} 2^{k}, \sum_{k=0}^{n} k \cdot 2^{k}$, and $\sum_{k=0}^{n} \frac{k}{2^{k}}$.
2. Show that $\sum_{k=0}^{n}\binom{n}{k}^{2}=\binom{2 n}{n}$.
3. Prove that

$$
f_{0}+f_{1} t+f_{2} t^{2}+\ldots=\frac{t}{1-t-t^{2}}
$$

where $f_{0}, f_{1}, f_{2}, \ldots$ are Fibonacci numbers: $f_{0}=0, f_{1}=1, f_{n}=f_{n-1}+f_{n-2}$ for $n \geq 2$.
4. Prove the identity (for a, b, c not equal to one another):

$$
\frac{(x-a)(x-b)}{(c-a)(c-b)}+\frac{(x-b)(x-c)}{(a-b)(a-c)}+\frac{(x-c)(x-a)}{(b-c)(b-a)}=1
$$

5. Show that if p is a prime number, then the polynomial $x^{n}-p$ cannot be decomposed into a product of two polynomials of positive degrees with integer coefficients
6. Suppose $p(x)$ is a polynomial with integer coefficients such that $p(0)=p(1)=2009$. Show that $p(x)$ has no integer roots.
7. Show that the polynomial $(x-1)(x-2) \ldots(x-100)-1$ cannot be decomposed into a product of two polynomials of positive degrees with integer coefficients
8. (Moscow Maths Olympiad 1997) For real numbers $a_{1} \leq a_{2} \leq a_{3}$ and $b_{1} \leq b_{2} \leq b_{3}$, we have $a_{1}+a_{2}+a_{3}=b_{1}+b_{2}+b_{3}$ and $a_{1} a_{2}+a_{1} a_{3}+a_{2} a_{3}=b_{1} b_{2}+b_{1} b_{3}+b_{2} b_{3}$. Prove that if $a_{1} \leq b_{1}$, then $a_{3} \leq b_{3}$.
9. Let us define polynomials $f_{n}(x)$ recursively: $f_{0}(x)=1, f_{1}(x)=x, f_{n+1}(x)=2 x f_{n}(x)-$ $f_{n-1}(x)$. Show that for each $a \in[-1,1]$ all roots of the polynomial $f_{n}(x)-a$ are real.
10. Let $f(t)$ and $g(t)$ be two polynomials in one variable. Show that there exists a polynomial $P(x, y)$ in two variables for which $P(f(t), g(t))=0$.
11. (IMC 2007) Let f be a polynomial of degree 2 with integer coefficients. Suppose that $f(k)$ is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5 .
12. (IMC 2008) Let n and k be positive integers, and suppose that the polynomial $x^{2 k}-x^{k}+1$ divides the polynomial $x^{2 n}+x^{n}+1$. Then the polynomial $x^{2 k}+x^{k}+1$ also divides $x^{2 n}+x^{n}+1$.
13. (IMC 2012) Consider a polynomial $f(x)=x^{2012}+a_{2011} x^{2011}+\ldots+a_{1} x+a_{0}$. Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the coefficients a_{0}, \ldots, a_{2011}, and assign a real value to it. Albert has the first move. Once a value is assigned to a coefficient, it cannot be changed anymore. The game ends after each player made 1006 moves, so all the coefficients have been assigned values. Homer's goal is to make $f(x)$ divisible by a certain polynomial $m(x)$, and Albert's goal is to prevent this.
(1) which of the players has a winning strategy for $m(x)=x-2012$?
(2) which of the players has a winning strategy for $m(x)=x^{2}+1$?
14. For a polynomial $f(x)$ with integer coefficients, all values at integer points are powers of 2 . Describe all such polynomials.
15. For a polynomial $f(x)$, all values at integer points are integers. Show that all the coefficients of $f(x)$ are rational numbers. Is it true that all coefficients of $f(x)$ always are integers?
16. * Is $\frac{3+4 i}{5}$ a root of unity? In other words, does there exist an integer $n>0$ such that $\left(\frac{3+4 i}{5}\right)^{n}=1$?
17. ${ }^{* *}$ For a polynomial $f(x)$, all values at integer points are perfect squares of integers. Show that $f(x)=(g(x))^{2}$ for some polynomial $g(x)$.

Some catchphrases:

- When proving identities for a finite (or infinite) sequence $\left\{a_{n}\right\}$, check out what they might mean for the polynomial (or power series) $\sum_{n} a_{n} x^{n}$. You might be pleasantly surprised. In particular,
- when proving an identity of the form $\sum_{k} a_{k}=b$, it sometimes is easier to prove an identity of the form $\sum_{k} a_{k} x^{k}=b(x)$, and then check $b(1)=b$;
- sums of the form $s_{n}=\sum_{k} a_{k} b_{n-k}$ beg to consider $A(x)=\sum_{k} a_{k} x^{k}, B(x)=\sum_{k} b_{k} x^{k}$, and $S(x)=\sum_{k} s_{k} x^{k}$; for these three we have $S(x)=A(x) B(x)$;
- if $\sum_{k} a_{k} x^{k}=b(x)$, then obviously $\sum_{k} k a_{k} x^{k}=x b^{\prime}(x)$;
- For each polynomial $f(x)$ and each a, the polynomial $f(x)-f(a)$ is divisible by $x-a$. Moreover, if $f(x) \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}$, then $\frac{f(x)-f(a)}{x-a} \in \mathbb{Z}[x]$. In particular, if $f(x) \in \mathbb{Z}[x]$ and $a, b \in \mathbb{Z}$, then $(b-a)$ is a divisor of $f(b)-f(a)$.
- When dealing with polynomials with integer coefficients, it is most helpful to reduce them modulo p for a prime p; this way you end up with polynomials with coefficients in a field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, and life becomes easier.
- A polynomial of degree at most n has at most m roots. As a consequence, there is at most one polynomial of degree at most n taking the given values at given $n+1$ points. (In fact, such a polynomial always exists and is unique.)
- If a polynomial $f(x)=a_{n} x^{n}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ has a rational root b / a, we have $b \mid a_{0}$ and $a \mid a_{n}$.

