Problem solving methods 1: numbers and polynomials (16/10/2012)

- 1. Compute the sums $\sum_{k=0}^{n} {n \choose k}$, $\sum_{k=0}^{n} k{n \choose k}$, $\sum_{k=0}^{n} k^{2}{n \choose k}$, $\sum_{k=0}^{n} 2^{k}$, $\sum_{k=0}^{n} k \cdot 2^{k}$, and $\sum_{k=0}^{n} \frac{k}{2^{k}}$.
- 2. Show that $\sum_{k=0}^{n} {\binom{n}{k}}^2 = {\binom{2n}{n}}$.
- 3. Prove that

$$f_0 + f_1 t + f_2 t^2 + \ldots = \frac{t}{1 - t - t^2},$$

where $f_0, f_1, f_2, ...$ are Fibonacci numbers: $f_0 = 0, f_1 = 1, f_n = f_{n-1} + f_{n-2}$ for $n \ge 2$.

4. Prove the identity (for *a*, *b*, *c* not equal to one another):

$$\frac{(x-a)(x-b)}{(c-a)(c-b)} + \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-a)} = 1$$

- 5. Show that if *p* is a prime number, then the polynomial $x^n p$ cannot be decomposed into a product of two polynomials of positive degrees with integer coefficients
- 6. Suppose p(x) is a polynomial with integer coefficients such that p(0) = p(1) = 2009. Show that p(x) has no integer roots.
- 7. Show that the polynomial $(x 1)(x 2) \dots (x 100) 1$ cannot be decomposed into a product of two polynomials of positive degrees with integer coefficients
- 8. (Moscow Maths Olympiad 1997) For real numbers $a_1 \le a_2 \le a_3$ and $b_1 \le b_2 \le b_3$, we have $a_1 + a_2 + a_3 = b_1 + b_2 + b_3$ and $a_1a_2 + a_1a_3 + a_2a_3 = b_1b_2 + b_1b_3 + b_2b_3$. Prove that if $a_1 \le b_1$, then $a_3 \le b_3$.
- 9. Let us define polynomials $f_n(x)$ recursively: $f_0(x) = 1$, $f_1(x) = x$, $f_{n+1}(x) = 2xf_n(x) f_{n-1}(x)$. Show that for each $a \in [-1, 1]$ all roots of the polynomial $f_n(x) a$ are real.
- 10. Let f(t) and g(t) be two polynomials in one variable. Show that there exists a polynomial P(x, y) in two variables for which P(f(t), g(t)) = 0.
- 11. (IMC 2007) Let f be a polynomial of degree 2 with integer coefficients. Suppose that f(k) is divisible by 5 for every integer k. Prove that all coefficients of f are divisible by 5.
- 12. (IMC 2008) Let *n* and *k* be positive integers, and suppose that the polynomial $x^{2k} x^k + 1$ divides the polynomial $x^{2n} + x^n + 1$. Then the polynomial $x^{2k} + x^k + 1$ also divides $x^{2n} + x^n + 1$.
- 13. (IMC 2012) Consider a polynomial $f(x) = x^{2012} + a_{2011}x^{2011} + \ldots + a_1x + a_0$. Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the coefficients a_0, \ldots, a_{2011} , and assign a real value to it. Albert has the first move. Once a value is assigned to a coefficient, it cannot be changed anymore. The game ends after each player made 1006 moves, so all the coefficients have been assigned values. Homer's goal is to make f(x) divisible by a certain polynomial m(x), and Albert's goal is to prevent this.
 - (1) which of the players has a winning strategy for m(x) = x 2012?
 - (2) which of the players has a winning strategy for $m(x) = x^2 + 1$?

- 14. For a polynomial f(x) with integer coefficients, all values at integer points are powers of 2. Describe all such polynomials.
- 15. For a polynomial f(x), all values at integer points are integers. Show that all the coefficients of f(x) are rational numbers. Is it true that all coefficients of f(x) always are integers?
- 16. * Is $\frac{3+4i}{5}$ a root of unity? In other words, does there exist an integer n > 0 such that $\left(\frac{3+4i}{5}\right)^n = 1$?
- 17. ** For a polynomial f(x), all values at integer points are perfect squares of integers. Show that $f(x) = (g(x))^2$ for some polynomial g(x).

Some catchphrases:

- When proving identities for a finite (or infinite) sequence $\{a_n\}$, check out what they might mean for the polynomial (or power series) $\sum_n a_n x^n$. You might be pleasantly surprised. In particular,
 - when proving an identity of the form $\sum_k a_k = b$, it sometimes is easier to prove an identity of the form $\sum_k a_k x^k = b(x)$, and then check b(1) = b;
 - sums of the form $s_n = \sum_k a_k b_{n-k}$ beg to consider $A(x) = \sum_k a_k x^k$, $B(x) = \sum_k b_k x^k$, and $S(x) = \sum_k s_k x^k$; for these three we have S(x) = A(x)B(x);
 - if $\sum_k a_k x^k = b(x)$, then obviously $\sum_k k a_k x^k = x b'(x)$;
- For each polynomial f(x) and each a, the polynomial f(x) f(a) is divisible by x a. Moreover, if $f(x) \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}$, then $\frac{f(x) f(a)}{x a} \in \mathbb{Z}[x]$. In particular, if $f(x) \in \mathbb{Z}[x]$ and $a, b \in \mathbb{Z}$, then (b a) is a divisor of f(b) f(a).
- When dealing with polynomials with integer coefficients, it is most helpful to reduce them modulo *p* for a prime *p*; this way you end up with polynomials with coefficients in a field F_p = ℤ/pℤ, and life becomes easier.
- A polynomial of degree at most *n* has at most *m* roots. As a consequence, there is at most one polynomial of degree at most *n* taking the given values at given *n* + 1 points. (In fact, such a polynomial always exists and is unique.)
- If a polynomial $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ has a rational root b/a, we have $b \mid a_0$ and $a \mid a_n$.