Problem set 23/10/2012. Masha Vlasenko

- Solving linear reccurences.
- Fibonacci numbers are defined by $f_{0}=0, f_{1}=1, f_{n+1}=f_{n}+f_{n-1}$. Prove the formula

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right) .
$$

- For given $n \geq 1$ find all real numbers a for which the $n \times n$ determinant

$$
\operatorname{det}\left(\begin{array}{cccccc}
a & 1 & 0 & 0 & 0 & \ldots \\
1 & a & 1 & 0 & 0 & \ldots \\
0 & 1 & a & 1 & 0 & \ldots \\
\ldots & & & & &
\end{array}\right)
$$

vanishes.

- Positive and non-negative definite matrices. Gram matrices.
- Let G be a connected graph (non-oriented, multiple edges and loops are allowed). We denote by V and E the sets of vertices and edges of G respectively. The incidence matrix $A_{G}=\left(a_{i j}\right)_{i, j \in V}$ of G is defined as follows. For $i \neq j$ one has that $a_{i j}=a_{j i}$ is the number of edges between i and j, and $a_{i i}$ is the degree of the vertex i (the number of edges entering i). Prove that $A_{G} \geq 0$ and $A_{G}>0$ if and only if G is bipartite.
The idea: One can identify the space of functions $\{f: E \rightarrow \mathbb{R}\}$ with $\mathbb{R}^{|E|}$ and consider the inner product $\langle f, g\rangle=\sum_{e \in E} f(e) g(e)$. It is possible to construct functions $f_{i}: E \rightarrow \mathbb{R}$ for all $i \in V$ such that $a_{i j}=\left\langle f_{i}, f_{j}\right\rangle$. Then A_{G} is a Gram matrix.

